References

Cai, Y., Cercone, N. & Han, J. 1990. An attribute-oriented approach for learning classification rules from relational       databases. Proceedings of the 6th International Conference on Data Engineering, 5-9 Februari. Los Angeles,       281-288.
Cai, Y., Cercone, N. & Han, J. 1991. Attribute-oriented induction in relational databases. Dlm. Piatetsky-Shapiro, G. &       Frawley, W. J. (pnyt.). Knowledge discovery in databases, hlm. 213-228. Menlo Park, CA: AAAI/MIT Press.
Chen, M. S., Han, J. & Yu, P. S. 1996. Data mining: an overview from a database perspective. IEEE Transactions on       Knowledge and Data Engineering 8(6): 866- 883.
Cheung, D. W., Hwang, H. Y., Fu, A. W. & Han, J. 2000. Efficient rule-based attribute-oriented induction for data       mining. Journal of Intelligent Information Systems 15(20): 175-200.
Fayyad, U. M., Piatetsky-Shapiro, G. & Symth, P. 1996a. Knowledge discovery and data mining: towards a unifying       framework. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD’96),       2-4 August. Portland, Oregon, USA, 82-88.
Fayyad, U. M., Piatetsky-Shapiro, G., Symth, P. & Uthurusamy, R. 1996b. From data mining to knowledge discovery:       an overview. Dlm. Fayyad, U., Piatetsky- Shapiro, G., Symth, P. & Uthurusamy, R. (pnyt.). Advances in       knowledge discovery and data mining, hlm. 1-35. Menlo Park, CA: AAAI/MIT Press.
Fu, Y. 1996. Discovery of multiple-level rules from large databases. Ph.D Thesis. Simon Fraser University, Barnaby,       Canada.
Han, J., Cai, Y. & Cercone, N. 1992. Knowledge discovery in databases: an attributeoriented approach. Proceedings of       the 18th International Conference on Very Large Data Bases (VLDB’92), 23-27 Ogos. Vancouver, Canada,       547-559.
Han, J., Cai, Y. & Cercone, N. 1993. Data-driven discovery of quantitative rules in relational database. IEEE       Transactions on Knowledge and Data Engineering 5(1): 29-40.
Han, J., Cai, Y., Cercone, N. & Huang, Y. 1994a. Discovery of data evolution regularities in large databases. Journal of       Computer and Software Engineering 3(1): 41-69.
Han, J., Fu, Y. & Ng, R. 1994b. Cooperative query answering using multiple layered databases. Proceedings of the 2nd       International Conference on Cooperative Information Systems (CoopIS’94), 17-20 Mei. Toronto, Canada, 47-58.
Han, J. & Kamber, M. 2001. Data mining: concepts and techniques. San Francisco, CA: Morgan Kaufman Publisher.
Kamber, M., Winstone, L., Gong, W., Cheng, S. & Han, J. 1997. Generalization and decision tree induction: efficient       classification in data mining. Proceedings of the 7th International Workshop on Research Issues on Data       Engineering (RIDE’97), 7-8 April. Birmingham, UK, 111-120.
Michalski, R. S. 1983. A theory and methodology of inductive learning. Dlm.
Michalski, R. S., Carbonell, J. G. & Mitchell, T. M. (pnyt.). Machine learning: an artificial learning intelligence approach,       hlm. 83-134. Los Altos, CA: Morgan Kaufmann Publisher.
Piatetsky-Shapiro, G. & Frawley, W. J. 1991. Knowledge discovery in databases. Menlo Park, CA: AAAI/MIT Press.
Silberschatz, A., Stonebraker, M. & Ullman, J. D. 1991. Database system: achievements and opportunities.       Communications of the ACM 33: 94-109.
Silberschatz, A., Stonebraker, M. & Ullman, J. D. 1996. Database research: achievements and opportunities into the       21st Century. SIGMOD Record 25: 52-63.
Turban, E. & Aronson, J. E. 2001. Decision support systems and intelligent systems. Ed. ke-6. New Jersey: Prentice       Hall.