References
Cai, Y., Cercone, N. & Han, J. 1990. An attribute-oriented approach for learning
classification rules from relational databases. Proceedings of the 6th International
Conference on Data Engineering, 5-9 Februari. Los Angeles, 281-288.
Cai, Y., Cercone, N. & Han, J. 1991. Attribute-oriented induction in relational
databases. Dlm. Piatetsky-Shapiro, G. & Frawley, W. J. (pnyt.). Knowledge
discovery in databases, hlm. 213-228. Menlo Park, CA: AAAI/MIT Press.
Chen, M. S., Han, J. & Yu, P. S. 1996. Data mining: an overview from a database
perspective. IEEE Transactions on Knowledge and Data Engineering 8(6): 866-
883.
Cheung, D. W., Hwang, H. Y., Fu, A. W. & Han, J. 2000. Efficient rule-based
attribute-oriented induction for data mining. Journal of Intelligent Information
Systems 15(20): 175-200.
Fayyad, U. M., Piatetsky-Shapiro, G. & Symth, P. 1996a. Knowledge discovery and
data mining: towards a unifying framework. Proceedings of the 2nd International
Conference on Knowledge Discovery and Data Mining (KDD’96), 2-4 August.
Portland, Oregon, USA, 82-88.
Fayyad, U. M., Piatetsky-Shapiro, G., Symth, P. & Uthurusamy, R. 1996b. From data
mining to knowledge discovery: an overview. Dlm. Fayyad, U., Piatetsky-
Shapiro, G., Symth, P. & Uthurusamy, R. (pnyt.). Advances in knowledge
discovery and data mining, hlm. 1-35. Menlo Park, CA: AAAI/MIT Press.
Fu, Y. 1996. Discovery of multiple-level rules from large databases. Ph.D Thesis.
Simon Fraser University, Barnaby, Canada.
Han, J., Cai, Y. & Cercone, N. 1992. Knowledge discovery in databases: an attributeoriented
approach. Proceedings of the 18th International Conference on Very
Large Data Bases (VLDB’92), 23-27 Ogos. Vancouver, Canada, 547-559.
Han, J., Cai, Y. & Cercone, N. 1993. Data-driven discovery of quantitative rules in
relational database. IEEE Transactions on Knowledge and Data Engineering
5(1): 29-40.
Han, J., Cai, Y., Cercone, N. & Huang, Y. 1994a. Discovery of data evolution
regularities in large databases. Journal of Computer and Software Engineering
3(1): 41-69.
Han, J., Fu, Y. & Ng, R. 1994b. Cooperative query answering using multiple layered
databases. Proceedings of the 2nd International Conference on Cooperative
Information Systems (CoopIS’94), 17-20 Mei. Toronto, Canada, 47-58.
Han, J. & Kamber, M. 2001. Data mining: concepts and techniques. San Francisco,
CA: Morgan Kaufman Publisher.
Kamber, M., Winstone, L., Gong, W., Cheng, S. & Han, J. 1997. Generalization and
decision tree induction: efficient classification in data mining. Proceedings of the
7th International Workshop on Research Issues on Data Engineering (RIDE’97),
7-8 April. Birmingham, UK, 111-120.
Michalski, R. S. 1983. A theory and methodology of inductive learning. Dlm.
Michalski, R. S., Carbonell, J. G. & Mitchell, T. M. (pnyt.). Machine learning:
an artificial learning intelligence approach, hlm. 83-134. Los Altos, CA:
Morgan Kaufmann Publisher.
Piatetsky-Shapiro, G. & Frawley, W. J. 1991. Knowledge discovery in databases.
Menlo Park, CA: AAAI/MIT Press.
Silberschatz, A., Stonebraker, M. & Ullman, J. D. 1991. Database system: achievements
and opportunities. Communications of the ACM 33: 94-109.
Silberschatz, A., Stonebraker, M. & Ullman, J. D. 1996. Database research: achievements
and opportunities into the 21st Century. SIGMOD Record 25: 52-63.
Turban, E. & Aronson, J. E. 2001. Decision support systems and intelligent systems.
Ed. ke-6. New Jersey: Prentice Hall.