References

Agrawal, R. & Srikant, R. 1994. Fast algorithm for mining association rules. Proc. Int. Conf. Very Large       Databases, pp. 487-449.
Agrawal, R., Imeilinski, T. & Swami, A. 1993. Mining association rule between sets of item in large       databases. Proc. ACM SIGMOD Conf. on Mngt. of Data, pp. 207-216.
Anis Suhailis Abdul Kadir. 2005. Kaedah kueri dua fasa dalam algoritma apriori untuk perlombongan petua       sekutuan. Master Thesis. Bangi: Universiti Kebangsaan Malaysia.
Bakar, A.A. 2002. Propositional satisfiability method in rough set classification modeling for data mining,       Ph.D Thesis. Serdang: Universiti Putra Malaysia.
Brian, L., Swami, A. & Jennifer, W. 1997. Clustering association rules. Proceedings of the 13th IEEE       International Conference on Data Engineering, Birmingham,pp 220-231
Chen, G., Liu, H., Yu, L., Wei, Q. & Zhang, X. 2005. A new approach to classification based on association       rule mining. Decision Support System 111222.
Davy, J., Wets, G., Tom, B. & Koen, V. 2005. Adapting the CBA algorithm by means of intensity of implication.       Informatics Sciences 175: 305-318.
Geng, L & Hamilton, H.J. 2006. Interestingness measures for data mining: A survey, ACM Computing Survey       38(3), pp. 1-32.
Han, J. & Kamber, M. 2001. Data mining concept and technique. San Francisco: Morgan Kaufmann Publishers
Han, J., Pei, Y. & Yin, Y. 2000. Mining frequent patterns without candidate generation. Proc. of the 2000 ACM       SIGMOD Int. Conf. on Management of Data, pp. 1-12
Jovanoski, V. & Lavrac, N. 2001. Classification Rule Learning with APRIORI-C. In Progress in Artificial       Intelligence, Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 111-135.
Kohavi, R. & Frasca, B. 1994. Useful feature subsets and roughs set reducts. 3rd International Workshop on       Rough Sets and Soft Goungating (RSSC’94). San Jose. USA, ed. T.Y. Lim and A.M. Wildberger. 1-8.
Lenarcik, A. & Piasta, Z. 1994. Rough classifiers. In Rough Set, Fuzzy Set, and Knowledge Discovery, ed. W.       Zairko. Springer-Verlag, London, pp. 298-316
Li, W., Han, J. and Pei, J. 2001. CMAR: Accurate and efficient classification based on multiple class       association rules. (on-line). dfzSzcmar01.pdf/li01cmar.pdf”       http://citeseer.ist.psu.edu/cache/papers/cs/27045/       http:zSzzSzwwwfaculty.cs.uiuc.eduzSz~hanjzSzpdfzSzcmar01.pdf/li01cmar.pdf (25 Mac 2006).
Liu, B., Hsu, W. & Ma, Y. 1998. Integrating classification and association rule mining. Proc. Int. Conf. on       Knowledge Discovery and Data Mining, pp. 487-489.
Liu, B., Ma, Y. & Wong, C.K. 2000. Improving an association rule based classifier. LNAI 1910: 504-509.
Ma, Y., Liu, B., Wong, C.K., Philip, S.Y. & Lee, S.M. 2000. Targeting right student using data mining, ACM       KDD, 2000, pp. 457-464
Mohsin, M.F. & Abd Wahab, M.H. 2008. Comparing knowledge quality in rough classifier and decision tree       classifier. Proceeding of 3rd IEEE International Symposium of Information Technology (ITSIM08), Kuala       Lumpur, August 26-29, 2008, pp. 1109-1114
Mollestad, T. 1997. A rough set approach to data mining: Extracting logic of default rules from data. Ph. D.       Norwegian University of Science and Technology.
Murphy, P.M. 1997. UCI repositories of machine learning and domain theories. (online).       http://www.ics.uci.edu/~mlearn/MLRepository.html (10 Nov 2005).
Nguyen, H.S. 1998. Descretization problem for rough set methods. Proc of First Int. Conf. on Rough Set and       Current Trend in Computing, pp. 545-552.
Ohrm, A. 2000. ROSETTA technical reference manual. (on-line). http://rosetta.lcb.uu.se/       general/resources/manual.pdf (23 Feb 2006).
Park, J.S., Chen, M. & Yu, P.S. 1995. An effective hashed based algorithm for mining association rule. ACM       SIGMOD Intl. Conf. Management of Data, pp. 201-231
Pawlak, Z. 1993. Rough set and data analysis. IEEE. 1-6.
Pawlak, Z., Grzymala, B.J., Slowinski, R. & Ziarko, W. 1995. Rough Set. Communications Of The ACM 38(11):       89-85.
Thabtah, F., Cowling, P. & Peng, Y. 2004. MCAR: Multi-class Classification based on Association Rule       Approach. Proc of the 3rd IEEE Int. Conf. on Computer Systems and Applications, pp. 1-7.
Yudho, G.S. & Raj, P.G. 2004. Building more accurate classifier based on strong frequent patterns. LNAI       3339: 1036-1042.
Zorman, M. Masuda, G. Kokol, P. Yamamoto, R. & Stiglic, B. 2002. Mining diabetes database with decision       trees and association rules. Proceedings of the 15th IEEE Symposium on Computer-Based Medical       Systems, (CBMS 2002). pp: 134 - 139
Ziarko, W. 1999. Discovery through rough set theory. Communications of the ACM. 42(11): 54-57.