References
Agrawal, R. & Srikant, R. 1994. Fast algorithm for mining association rules. Proc. Int. Conf. Very Large Databases, pp. 487-449.
Agrawal, R., Imeilinski, T. & Swami, A. 1993. Mining association rule between sets of item in large databases. Proc. ACM SIGMOD Conf. on Mngt. of Data, pp. 207-216.
Anis Suhailis Abdul Kadir. 2005. Kaedah kueri dua fasa dalam algoritma apriori
untuk perlombongan petua sekutuan. Master Thesis. Bangi: Universiti Kebangsaan
Malaysia.
Bakar, A.A. 2002. Propositional satisfiability method in rough set classification
modeling for data mining, Ph.D Thesis. Serdang: Universiti Putra Malaysia.
Brian, L., Swami, A. & Jennifer, W. 1997. Clustering association rules. Proceedings
of the 13th IEEE International Conference on Data Engineering, Birmingham,pp
220-231
Chen, G., Liu, H., Yu, L., Wei, Q. & Zhang, X. 2005. A new approach to
classification based on association rule mining. Decision Support System 111222.
Davy, J., Wets, G., Tom, B. & Koen, V. 2005. Adapting the CBA algorithm by means
of intensity of implication. Informatics Sciences 175: 305-318.
Geng, L & Hamilton, H.J. 2006. Interestingness measures for data mining: A survey,
ACM Computing Survey 38(3), pp. 1-32.
Han, J. & Kamber, M. 2001. Data mining concept and technique. San Francisco:
Morgan Kaufmann Publishers
Han, J., Pei, Y. & Yin, Y. 2000. Mining frequent patterns without candidate
generation. Proc. of the 2000 ACM SIGMOD Int. Conf. on Management of Data,
pp. 1-12
Jovanoski, V. & Lavrac, N. 2001. Classification Rule Learning with APRIORI-C. In
Progress in Artificial Intelligence, Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, pp. 111-135.
Kohavi, R. & Frasca, B. 1994. Useful feature subsets and roughs set reducts. 3rd
International Workshop on Rough Sets and Soft Goungating (RSSC’94). San
Jose. USA, ed. T.Y. Lim and A.M. Wildberger. 1-8.
Lenarcik, A. & Piasta, Z. 1994. Rough classifiers. In Rough Set, Fuzzy Set, and
Knowledge Discovery, ed. W. Zairko. Springer-Verlag, London, pp. 298-316
Li, W., Han, J. and Pei, J. 2001. CMAR: Accurate and efficient classification based
on multiple class association rules. (on-line). dfzSzcmar01.pdf/li01cmar.pdf”
http://citeseer.ist.psu.edu/cache/papers/cs/27045/ http:zSzzSzwwwfaculty.cs.uiuc.eduzSz~hanjzSzpdfzSzcmar01.pdf/li01cmar.pdf (25 Mac 2006).
Liu, B., Hsu, W. & Ma, Y. 1998. Integrating classification and association rule
mining. Proc. Int. Conf. on Knowledge Discovery and Data Mining, pp. 487-489.
Liu, B., Ma, Y. & Wong, C.K. 2000. Improving an association rule based classifier.
LNAI 1910: 504-509.
Ma, Y., Liu, B., Wong, C.K., Philip, S.Y. & Lee, S.M. 2000. Targeting right student
using data mining, ACM KDD, 2000, pp. 457-464
Mohsin, M.F. & Abd Wahab, M.H. 2008. Comparing knowledge quality in rough
classifier and decision tree classifier. Proceeding of 3rd IEEE International
Symposium of Information Technology (ITSIM08), Kuala Lumpur, August 26-29,
2008, pp. 1109-1114
Mollestad, T. 1997. A rough set approach to data mining: Extracting logic of default
rules from data. Ph. D. Norwegian University of Science and Technology.
Murphy, P.M. 1997. UCI repositories of machine learning and domain theories. (online).
http://www.ics.uci.edu/~mlearn/MLRepository.html (10 Nov 2005).
Nguyen, H.S. 1998. Descretization problem for rough set methods. Proc of First Int.
Conf. on Rough Set and Current Trend in Computing, pp. 545-552.
Ohrm, A. 2000. ROSETTA technical reference manual. (on-line). http://rosetta.lcb.uu.se/
general/resources/manual.pdf (23 Feb 2006).
Park, J.S., Chen, M. & Yu, P.S. 1995. An effective hashed based algorithm for mining
association rule. ACM SIGMOD Intl. Conf. Management of Data, pp. 201-231
Pawlak, Z. 1993. Rough set and data analysis. IEEE. 1-6.
Pawlak, Z., Grzymala, B.J., Slowinski, R. & Ziarko, W. 1995. Rough Set.
Communications Of The ACM 38(11): 89-85.
Thabtah, F., Cowling, P. & Peng, Y. 2004. MCAR: Multi-class Classification based
on Association Rule Approach. Proc of the 3rd IEEE Int. Conf. on Computer
Systems and Applications, pp. 1-7.
Yudho, G.S. & Raj, P.G. 2004. Building more accurate classifier based on strong
frequent patterns. LNAI 3339: 1036-1042.
Zorman, M. Masuda, G. Kokol, P. Yamamoto, R. & Stiglic, B. 2002. Mining diabetes
database with decision trees and association rules. Proceedings of the 15th IEEE
Symposium on Computer-Based Medical Systems, (CBMS 2002). pp: 134 - 139
Ziarko, W. 1999. Discovery through rough set theory. Communications of the ACM.
42(11): 54-57.