Sains Malaysiana 34(1): 113-118 (2005)

 

Pendekatan Pemodelan Multitahap ke Atas Data

Hierarki Pencapaian Pelajar

(Multilevel Approach on Hierachically Structured

Data of Student's Performance)

 

 

Nur Riza M. Suradi & Teh Siew Lan

Pusat Pengajian Sains Matematik

Fakulti Sains dan Matematik

Universiti Kebangsaan Malaysia

43600 UKM Bangi Selangor, D.E.

 

 

 

ABSTRAK

 

Rencana ini membincangkan pendekatan multitahap dalam pembinaan model penganggaran pencapaian pelajar yang mempunyai struktur data hierarki. Model multitahap yang mengambil kira variasi data yang berpunca dari pengelompokan data pada tahap-tahap yang berbeza dibandingkan dengan model regresi linear yang menggunakan kaedah kuasa dua terkecil. Seterusnya kajian ini menganggar sumbangan faktor jantina dan etnik ke atas pencapaian pelajar. Data pencapaian akademik seramai 866 pelajar fakulti sains di sebuah institusi pengajian tinggi telah diperoleh dan dianalisis. Data pelajar ini berstruktur hierarki dengan dua tahap, iaitu pelajar dan jabatan. Hasil kajian menunjukkan kedua-dua kaedah memberikan penganggaran yang berbeza. Malah, didapati model multitahap yang memasukkan variasi dari tahap-tahap berlainan dan pembolehubah peramal dari tahap yang lebih tinggi memberikan padanan model lebih baik bagi menerangkan pencapaian pelajar.

 

Kata kunci: model multitahap, struktur hierarki, pencapaian pelajar

 

 

ABSTRACT

 

This paper discusses the multilevel approach in constructing a model for estimating hierarchically structured data of students' performance. Multilevel models that take into account variation from the clustering of data in different levels are compared to regression models using least squares method. This study also estimates the contributions of gender and ethnic factors on students' performance. Performance data of866 students in a science faculty in an institution of higher learning is obtained and analyzed. This data is hierarchically structured with two levels, namely students and departments. Analysis findings show different parameter estimates for both models. Also, the multilevel model which incorporates variability from different levels and predictors from higher levels is found to provide a better fit for model explaining students' performance.

 

Keywords: multilevel model, hierarchy structure, students' performance

 

 

RUJUKAN/REFERENCES

 

Burstein, L., Fischer, K.H. & Miller, M.D. 1980.  The multilevel effects of background on science achievement: A cross national comparison. Sociology of Education 53: 215-225.

Goldstein, H. 1997. Methods in school effectiveness research. School Effectiveness and School Improvement 8: 369-395.

Goldstein H. 1995. Multilevel statistical models. Ed. ke-2. London: Edward Arnold.

Goldstein, H. 1979. Some Models for Analyzing Longitudinal Data on Educational Attainment. J.R. Statist. Soc. A. 142(4):407-442.

Hox, J. J. 1998. Multilevel Modeling: When and why? pp. 147­154. In 1. Balderjahn, R. Mathar & M. Schader (Eds.), Classification, data analysis, and data highways. New York: Springer Verlag.

Kreft, I.G.G. 1996. Are Multilevel Techniques Necessary? An Overview, including Simulation Studies. (atas talian) http://www.calstatela.edu /faculty/ikreft/ quarterly/ quarterly.html (13 Ian 2004).

Kreft, I.G.G. & de Leeuw, J. 1998. Introducing multilevel modelling. London: SAGE Publication.

Lineberry, R.L. 2003. Research on schools. Social Science Quarterly 84(3): 485-542.

Longford, N. T. 1993. Random Coefficient Models. University Press, Inc. New York: Oxford.

Monette, G., Shao, O. & Kwan, E. 2002. A first look at multilevel models institute for social research. (atas talian) http://www.math.yorku.ca/-georges/OptPortFontDeflts.pdf (13 Jan 2004).

Nur Riza M. S. & Mokhtar A. 1999. Multilevel modeling for hierarchical and clustered data. Presented at One-day Seminar on Statistics, UM, Feb. 6, 1999.

Rasbash J., Browne W., Goldstein H., Yang M., Plewis I., Healy M., Woodhouse G., Draper D., Langford I. & Lewis T. 2000. A user's guide to MLwiN: multilevel models project Institute of Education University of London, versi ke-2.1.

Raudenbush, S. 1995. Re-examining, Reaffirming and Improving Applications of Hierarchical Models. Journal of Educational and Behavioral Statistics 20(2).

Snijders T. A. B. & Bosker R. J. 1999. Multilevel analysis: an introduction to basic and advanced multilevel modelling. London: SAGE Publications.

Vann den Eden, P. & Hiiettner, H. J.M. 1982. Multilevel Research. Current Sociology 30: 1-117.

 

 

 

previous