Sains Malaysiana 41(11)(2012):
1403–1410
Preliminary
Study on Bayesian Extreme Rainfall Analysis: A Case Study
of Alor Setar, Kedah,
Malaysia
(Kajian Awal bagi Analisis Kehujanan Melampau Bayes: Kajian Kes
di Alor Setar, Kedah, Malaysia)
Annazirin Eli*
Department of Science in Engineering, Faculty
of Engineering
International Islamic University
Malaysia, 50728 Gombak, Kuala Lumpur, Malaysia
Mardhiyyah
Shaffie & Wan Zawiah
Wan Zin
School
of Mathematical Siences, Faculty of Science and Technology
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Received: 10 October 2011/Accepted: 18 June 2012
ABSTRACT
Statistical modeling of extreme rainfall is essential since the
results can often facilitate civil engineers and planners to estimate the
ability of building structures to survive under the utmost extreme conditions.
Data comprising of annual maximum series (AMS) of extreme rainfall
in Alor Setar were fitted to generalized extreme value
(GEV)
distribution using method of maximum likelihood (ML) and Bayesian Markov
Chain Monte Carlo (MCMC) simulations. The weakness of ML method
in handling small sample is hoped to be tackled by means of Bayesian MCMC simulations
in this study. In order to obtain the posterior densities, non-informative and
independent priors were employed. Performances of parameter estimations were
verified by conducting several goodness-of-fit tests. The results showed that
Bayesian MCMC method was slightly better than ML method in estimating GEV parameters.
Keywords: Annual maximum series; Bayesian MCMC; extreme rainfall
analysis; extreme value distribution; generalized maximum likelihood
ABSTRAK
Pemodelan statistik bagi hujan melampau amat
penting, memandangkan hasil dapatannya mampu membantu jurutera awam dan pakar
runding untuk menjangka kebolehan struktur sesebuah bangunan untuk bertahan dalam
situasi yang paling melampau. Data daripada siri maksimum tahunan (AMS)
disuaikan menggunakan taburan nilai melampau teritlak (GEV) dengan menggunakan
kaedah kebolehjadian maksimum (ML) dan kaedah simulasi Markov Chain Monte
Carlo (MCMC)
Bayes. Kelemahan kaedah ML dalam pengendalian
sampel kecil diharap dapat diatasi dengan kaedah simulasi MCMC Bayes. Bagi mendapatkan taburan posterior, taburan prior tak-bermaklumat dan
tak-bersandar digunakan. Padanan bagi parameter yang
dicadangkan disahkan dengan menjalankan beberapa ujian kebagusan penyuaian (GOF). Hasilnya, didapati kaedah MCMC Bayes memberikan
anggaran yang sedikit lebih baik berbanding kaedah ML bagi menganggar
nilai-nilai parameter taburan GEV.
Kata kunci: Kaedah
kebolehjadian maksimum; kajian hujan ekstrem; MCMC Bayes;
siri maksimum tahunan; taburan nilai ekstrim teritlak
REFERENCES
Alam, M.M., Siwar, C., Toriman, M.E., Molla,
R.I. & Talib, B. 2011. Climate change induced
adaptation by paddy farmers in Malaysia. Mitig. Adapt. Strateg. Glob. Change DOI: 10.1007/s11027-011-9319-5.
Coles, S. 2001. An Introduction to
Statistical Modeling of Extreme Values. London: Springer.
Coles, S. & Dixon, M.J. 1999. Likelihood-based
inference for extreme value models. Extremes 2: 5-23.
Coles, S. & Tawn, J.A. 1996. A Bayesian
analysis of extreme rainfall data. J. Appl. Statist. 45: 463-478.
Coles, S., Pericchi, L. & Sisson, S. 2003. A fully probabilistic approach to extreme rainfall modeling. J. Hydrology 273: 35-50.
Fawcett, L. & Walshaw, D. 2008. Modeling environmental
extremes. Short course for the 19th annual conference of the
International Environmentrics Society, June 8, Kelowna, Canada.
Gamerman, D. & Lopes, H.F. 2006. Markov Chain Monte Carlo:
Stochastic simulation for Bayesian Inference. Florida: Boca Raton.
Gilks, W.R., Richardson, S. & Spiegelhalter, D.J. 1996. Markov Chain Monte Carlo in Practice. London:
Chapman and Hall.
Hosking, J.R.M. 1990. L-moments: Analysis and estimation of
distribution using linear combinations of order statistics. Journal of the
Royal Statistical Society (B) 52: 105-124.
Hosking, J.R.M. & Wallis, J.R. 1997 Regional Frequency
Analysis: An Approach Based On L-moments London: Cambridge University
Press.
Hosking, J.R.M., Wallis, J.R. & Wood, E.F. 1985. Estimation of the generalized extreme-value distribution by method
of probability-weighted moments. Technometrics 27: 251-261.
Madsen, H., Rasmussen, P. & Rosbjerg, D. 1997. Comparison of
annual maximum series and partial duration series methods for modeling extreme
hydrologic events 1: at-site modeling. Water Resour. Res. 33: 747-757.
Ntzoufras, I. 2009. Bayesian Modeling using WinBUGS. New
Jersey: John Wiley & Sons.
Katz, R.W., Parlange, M.B. & Naveau, P. 2002. Statistics of extremes in hydrology. Adv. Water Resour. 25:
1287-1304.
Koutsoyiannis, D. & Baloutsos, G. 2000. Analysis
of a long record of annual maximum rainfall in Athens, Greece and design
rainfall inferences. Natural Hazards 22: 31-51.
Koutsoyiannis, D. 2003. On the appropriateness
of the Gumbel distribution in modeling extreme rainfall. Proceedings of the ESF LESC Exploratory Workshop, October
24-25, Bolonga, Italy.
Rao, A.R. & Hamed, H.K. 2000. Flood Frequency Analysis.
Florida: Boca Raton.
Roberts, G.O. & Rosenthal, J.S. 2001. Optimal
scaling for various Metropolis-Hasting algorithms. J. Appl. Statist.
Sci. 16: 351-367.
Shabri, A.B., Zalina, M.D. & Ariff, N.M. 2011. Regional analysis of annual maximum rainfall using TL-moments method. Theor. Appl. Climatol. 104: 561-570.
Smith, E. 2005. Bayesian Modeling of Extreme Rainfall Data. Ph.D.
dissertation, University of Newcastle upon Tyne, Newcastle (Unpublished).
Smith, R.L. 1985. Maximum likelihood estimation
in a class of non-regular cases. Biometrika 72: 67-92.
Zalina, M.D., Desa, M.N., Nguyen, V.T.V. & Hashim, M.K. 2002.
Selecting a probability distribution for extreme rainfall series in Malaysia. Water
Science and Technology 45: 63-68.
Zin, W.Z.W., Jamaludin, S., Deni, S.M. & Jemain, A.A. 2010.
Recent changes in extreme rainfall events in Peninsular Malaysia: 1971-2005. Theor.
Appl. Climatol. 99: 303-314.
Zin, W.Z.W., Jemain, A.A., Ibrahim, K., Jamaludin, S. &
Deni, S.M. 2009a. A comparative study
of extreme rainfall in Peninsular Malaysia: with reference to partial duration
and annual extreme series. Sains Malaysiana 38: 751-760.
Zin, W.Z.W. & Jemain, A.A. 2009b. The best fitting distribution of annual maximum rainfall in
Peninsular Malaysia based on methods of L-moment and LQ-moment. Theor. Appl.
Climatol. 96: 337-344.
*Corresponding
author; email: annazirin@iium.edu.my
|