Sains Malaysiana 41(11)(2012): 1483–1487
Parameter
Estimation on Zero-Inflated Negative Binomial Regression
with Right Truncated Data
(Anggaran Parameter untuk
Regresi Binomial Negatif Sifar-Melambung dengan
Pemangkasan Data Sebelah Kanan)
Seyed Ehsan Saffari* & Robiah Adnan
Department of Mathematical Sciences, Faculty of Science, Universiti
Teknologi Malaysia
81310 Skudai, Johor, Malaysia
Received:
25 May 2012 / Accepted: 2 July 2012
ABSTRACT
A Poisson model typically is assumed for count data, but when
there are so many zeroes in the response variable, because of overdispersion, a
negative binomial regression is suggested as a count regression instead of
Poisson regression. In this paper, a zero-inflated negative binomial regression
model with right truncation count data was developed. In this model, we
considered a response variable and one or more than one explanatory variables.
The estimation of regression parameters using the maximum likelihood method was
discussed and the goodness-of-fit for the regression model was examined. We
studied the effects of truncation in terms of parameters estimation, their
standard errors and the goodness-of-fit statistics via real data. The results
showed a better fit by using a truncated zero-inflated negative binomial
regression model when the response variable has many zeros and it was right
truncated.
Keywords: Maximum likelihood; truncated data; zero-inflated
negative binomial
ABSTRAK
Model Poisson biasanya diandaikan untuk data bilangan, tetapi
apabila terdapat banyak nilai sifar bagi pemboleh ubah bersandar yang
disebabkan oleh penyerakan lampau, regresi binomial negatif dicadangkan sebagai
regresi bilangan. Dalam artikel ini, model regresi binomial
negatif sifar-melambung, dengan pemangkasan data bilangan pada sebelah kanan
dibangunkan. Dalam model ini, kami mempertimbangkan
satu pemboleh ubah bersandar dan satu atau lebih pemboleh ubah tak bersandar. Anggaran bagi parameter regresi menggunakan kaedah kemungkinan
maksimum dibincang dan ujian penyuaian untuk model regresi diperiksa. Kesan pemangkasan dari segi penganggaran parameter dan ralat piawai
dikaji menggunakan data sebenar. Keputusan menunjukkan
penyuaian adalah lebih baik apabila menggunakan model regresi binomial negatif
sifar melambung dengar pemangkasan di sebelah kanan apabila pemboleh ubah
respons mempunyai banyak sifar dan dipangkas di sebelah kanan.
Kata kunci: Binomial negatif sifar-melambung;
data pangkasan; kemungkinan maksimum
REFERENCES
Cameron, A.C. & Trivedi, P.K. 1998. Regression
Analysis of Count Data. Cambridge, UK: Cambridge University Press.
Famoye, F. & Singh, K.P. 2006. Zero-inflated generalized
Poisson model with an application to domestic violence data. Journal of Data
Science 4(1): 117-30.
Famoye, F. & Wang, W. 2004. Censored generalized Poisson regression model. Computational
Statistics and Data Analysis 46: 547-560.
Hall, D.B. 2000. Zero-inflated Poisson and binomial
regression with random effects: A case study. Biometrics 56: 1030-1039.
Lambert, D. 1992. Zero-inflated Poisson regression, with an application to
defects in manufacturing. Technometrics 34: 1-14.
Saffari, S.E. & Robiah Adnan 2010. Zero-Inflated Negative Binomial Regression Model with Right
Censoring Count Data. Proceedings of the Faculty of
Science Postgraduate Conference (FSPGC’10); October 5-7, Johor, Malaysia.
*Corresponding
author; email: ehsanreiki@yahoo.com
|