Sains Malaysiana 43(6)(2014): 819–825

 

An Analysis of the Electron Trajectory in the Vicinity of GaAs Quantum Dot

(Analisis Lintasan Pergerakan Elektron di Sekitar Titik Kuantum GaAs)

 

 

HANAFI ITHNIN12*, M. KHALID KASMIN1, A. RADZI MAT ISA1, A. SHAARI1

& R. AHMED1

 

1Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai,

81310 Johor, Malaysia

 

2Plan Assesment Technology (PAT), Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia

 

Received: 29 March 2013/Accepted: 21 December 2013

 

 

ABSTRACT

Quantum dots being an interesting class of nanostructures are considered potential prototype systems for novel nano-devices such as single electron transistor (SET). Here in this research, we present an analysis of the electron trajectory in the vicinity of gallium arsenide (GaAs) quantum dot. To perform this study, DFT based methodology is employed to optimize structure of quantum dot and determining the electrostatic potential around the dot. Under the influence of obtained electrostatic potential, trajectory of the moving electron towards the dot is investigated. The results showed that GaAs quantum dot have negative and positive potential surfaces that influence the electron interaction with the dot. These results motivate the development of SET electrode channel where the electron moves towards the dot on the surface with positive potential rather than negative potential surface.

 

Keywords: Density functional theory; electron trajectory; GaAs; quantum dot

 

ABSTRAK

Titik kuantum adalah kelas struktur-nano yang menarik dan dianggap berpotensi sebagai sistem prototip untuk peranti-nano seperti transistor elektron tunggal (SET). Dalam kajian ini kami melaporkan analisis lintasan elektron di sekitar titik kuantum galium arsenida (GaAs). Dalam kajian ini, kaedah DFT digunakan untuk mengoptimumkan struktur titik kuantum dan mengira keupayaan elektrostatik di sekeliling titik kuantum. Di bawah aruhan keupayaan elektrostatik yang didapati, lintasan pergerakan satu elektron menuju ke titik kuantum dikaji. Hasil kajian. menunjukkan bahawa titik kuantum GaAs mempunyai permukaan keupayaan positif dan negatif yang mengaruh interaksi antara elektron dan titik kuantum. Hasil kajian ini memotivasikan pembangunan saluran elektrod SET dengan elektron bergerak menuju ke arah titik kuantum pada permukaan keupayaan positif berbanding permukaan berkeupayaan negatif.

 

Kata kunci: GaAs; lintasan elektron; teori fungsi ketumpatan; titik kuantum

 

REFERENCES

 

Akiyama, T., Kawaguchi, K., Sugawara, M., Sudo, H., Ekawa, M., Ebe, H., Kuramata, A., Utsubo, K., Morito, K. & Arakawa, Y. 2003. 29th Euro.conf.on Opt.Comn. (ECOC), Rimini Fiera, postdeadline paper.

Arashida, Y., Ogawa, Y. & Minani, F. 2010. Correlated photon from multi-carrier complexes in GaAs quantum dot. Superlattices and Microstructure 47: 93-97.

Blick, R.H., Haug, R.J., Weis, J., Pfannkuche, D., Klitzing, K.V. & Eberl, K. 1996. Single electron tunneling through a double quantum dot: The artificial molecule. Phys. Rev. B: Condensed Matter 53(12): 7899-7902.

Bode, B.M. & Gordon, M.S. 1998. Macmolplt: A graphical user interface for GAMESS. J. Mol. Graphics Mod. 16(12): 133-138.

Boese, D. & Schoeller, H. 2001. Influence of nanomechanical properties on single-electron tunneling: A vibrating single-electron transistor. Euro. Phys. Lett. 54(5): 668.

Burrill, S. & Grein, F. 2005. Structure and Bonding of III/V compounds X2Y2, with X=B, Al, Ga, and Y=N, P, As. Journal of Molecular Structure (Theochem) 757(1-3): 137- 142.

Drbohlavova, J., Adam, V., Kizek, R. & Hubalek, J. 2009. Quantum dots - characterization, preparation and usage in biological systems. Int. J. Mol. Sci. 10(2): 656-673.

Fujioka, K., Hiruoka, M., Sato, K., Manabe, N., Miyasaka, R., Hanada, S., Hoshino, A., Tilley, R.D., Manome, Y., Hirakuri, K. & Yamamoto, K. 2008. Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration. Nanotechnology 19(41): 415102.

Glazman, L.I. 2000. Single electron tunneling. Journal for Low Temperature Physics 118(5-6): 247-269.

Gosh, C., Pal, S., Goswam, B. & Sharkar, P. 2005. Theoretical study on size-dependent properties of GanAsn cluster. Chemical Physics Letters 407: 498-503.

Gupta, R.K. & Saraf, V. 2009. Nanoelectronics: Tunneling current in DNA-single electron transistor. Current Applied Physics 9: S149-S152.

Hanafi Ithnin, Ahmad Radzi M. Isa, Mohd Khalid Kasmin & Saeed, M.A. 2012. Study of electrostatic potential surface around bipyramidal GaAs quantum dot. Digest Journal of Nanomaterials and Biostructures 7(4): 1787-1791.

Howes, M.J. & Morgan, D.V. 1985. Gallium Arsenide: Materials, Devices, and Circuits. New York: Wiley.

Huffaker, D.L. & Deppe, D.G. 1998. Electro luminescent efficiency of 1.3 μm room temperature GaAs-based quantum dot. Appl Phys. Lett. 73: 2564-2565.

Karamanis, P., Begue, D. & Pouchan, C. 2007. Ab initio finite field (hyper) polarizability computations on stoichiometric gallium arsenide clusters GanAsn (n=2-9): Journal of Chemical Physics 127: 094706.

Karatzer, P., Morgan, C.G. & Scheffler, M. 1998. Density functional theory studies on microscopic processes of GaAs Growth. Progress in Surface Science 59: 135-147.

Kastner, M.A. 2000. The single electron transistor and artificial atoms. Ann. Phys. (Leipzig) 9(11-12): 885-894.

Kirstaedter, N., Ledentsov, N.N., Grundmann, M., Bimberg, D., Ustinov, V.M., Ruvimov, S.S., Maximov, M.V., Kop’ev, P.S., Alferov Urichter, Z.I., Werner, P., Gosele, U. & Heydenreich, J. 1994. Low threshold , large T0 injection laser emission from (InGa)As quantum dots. Electron. Lett. 30: 1416.

Kuroda K., Kuroda T., Watanabe K., Mano T., Kiddo G., Koguchi N., Sakoda K., (2010). Distribution of exciton emission linewidth observed for GaAs quantum dots grown by droplet epitaxy. Journal of Luminescence 130: 2390-2393.

Lee, S., Shin, D.W., Kim, W.M., Cheong, B., Lee, T.S., Lee, K.S. & Cho, S. 2006. Room temperature synthesized GaAs quantum dot embedded in SiO2 composite film. Thin Solid Films 514: 296-301.

Li, W.Z. & Huang, M.B. 2003. Equilibrium structures and hyperfine parameters of some fluorinated hydrocarbon radical cations: a DFT B3LYP and MP2 study. Journal of Molecular Structure (Theochem) 636(1-3): 71-79.

Liu, H.C. 2003. Quantum infrared photo detector. Opto- Electronics Lev. 11(1): 1-5.

Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M. & Montgomery, J.A. 1993. General atomic and molecular electronic structure system. Comput. Chem. 14: 1347-1363.

Schouteden, K., Vandamme, N., Janssens, E., Lievens, P. & Haesendonck, C.V. 2008. Confinement of surface state electrons in self-organized Co islands on Au(111). New J. Phys. 10: 043016.

Stevens, W.J., Krauss, M., Basch, H. & Jasien Can, P.G. 1992. Relativistic compact effective potential and efficient, shared-exponent basis sets for the third-, fourth-, fifth-row atoms. J. Chem. 70: 612-630.

Sugawara, M., Ebe, H., Hatori, N., Ishida, M., Arakawa, Y., Akiyama, T., Utsubo, K. & Nakata, Y. 2004. Theory of optical signal amplification and processing by quantum dot semiconductor optical amplifier. Phys. Rev. B 69: 235332.

Sun, Y.L., Chen, X., Sun, L., Guo, X. & Lu, W. 2003. Nanoring structure and optical properties of GA8As8. Chemical Physics Letters 381: 397-403.

 

 

*Corresponding author; email: hanafizik@gmail.com

 

 

previous