Sains Malaysiana 43(6)(2014):
819–825
An Analysis of
the Electron Trajectory in the Vicinity of GaAs Quantum Dot
(Analisis Lintasan
Pergerakan Elektron di Sekitar Titik Kuantum GaAs)
HANAFI ITHNIN12*, M.
KHALID
KASMIN1, A.
RADZI
MAT
ISA1, A.
SHAARI1
& R. AHMED1
1Department
of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM
Skudai,
81310
Johor, Malaysia
2Plan
Assesment Technology (PAT), Industrial Technology Division, Malaysian
Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia
Received: 29 March 2013/Accepted: 21 December 2013
ABSTRACT
Quantum dots being an interesting
class of nanostructures are considered potential prototype systems for novel
nano-devices such as single electron transistor (SET). Here in this research,
we present an analysis of the electron trajectory in the vicinity of gallium
arsenide (GaAs) quantum dot. To perform this study, DFT based methodology is
employed to optimize structure of quantum dot and determining the electrostatic
potential around the dot. Under the influence of obtained electrostatic
potential, trajectory of the moving electron towards the dot is investigated.
The results showed that GaAs quantum dot have negative and positive potential
surfaces that influence the electron interaction with the dot. These results
motivate the development of SET electrode channel where the electron moves
towards the dot on the surface with positive potential rather than negative
potential surface.
Keywords: Density functional theory;
electron trajectory; GaAs; quantum dot
ABSTRAK
Titik kuantum adalah kelas struktur-nano
yang menarik dan dianggap berpotensi sebagai sistem prototip untuk
peranti-nano seperti transistor elektron tunggal (SET). Dalam kajian
ini kami melaporkan analisis lintasan elektron di sekitar titik
kuantum galium arsenida (GaAs). Dalam kajian ini, kaedah DFT digunakan
untuk mengoptimumkan struktur titik kuantum dan mengira keupayaan
elektrostatik di sekeliling titik kuantum. Di bawah aruhan keupayaan
elektrostatik yang didapati, lintasan pergerakan satu elektron menuju
ke titik kuantum dikaji. Hasil kajian. menunjukkan bahawa titik
kuantum GaAs mempunyai permukaan keupayaan positif dan negatif yang
mengaruh interaksi antara elektron dan titik kuantum. Hasil kajian
ini memotivasikan pembangunan saluran elektrod SET dengan elektron
bergerak menuju ke arah titik kuantum pada permukaan keupayaan positif
berbanding permukaan berkeupayaan negatif.
Kata kunci: GaAs; lintasan elektron;
teori fungsi ketumpatan; titik kuantum
REFERENCES
Akiyama,
T., Kawaguchi, K., Sugawara, M., Sudo, H., Ekawa, M., Ebe, H., Kuramata,
A., Utsubo, K., Morito, K. & Arakawa, Y. 2003. 29th Euro.conf.on
Opt.Comn. (ECOC), Rimini Fiera, postdeadline paper.
Arashida,
Y., Ogawa, Y. & Minani, F. 2010. Correlated photon from multi-carrier
complexes in GaAs quantum dot. Superlattices and Microstructure 47:
93-97.
Blick,
R.H., Haug, R.J., Weis, J., Pfannkuche, D., Klitzing, K.V. & Eberl, K.
1996. Single electron tunneling through a double quantum dot: The artificial
molecule. Phys. Rev. B: Condensed Matter 53(12): 7899-7902.
Bode,
B.M. & Gordon, M.S. 1998. Macmolplt: A graphical user interface for GAMESS. J. Mol. Graphics Mod. 16(12): 133-138.
Boese,
D. & Schoeller, H. 2001. Influence of nanomechanical properties on
single-electron tunneling: A vibrating single-electron transistor. Euro.
Phys. Lett. 54(5): 668.
Burrill,
S. & Grein, F. 2005. Structure and Bonding of III/V compounds X2Y2, with
X=B, Al, Ga, and Y=N, P, As. Journal of Molecular Structure (Theochem) 757(1-3):
137- 142.
Drbohlavova,
J., Adam, V., Kizek, R. & Hubalek, J. 2009. Quantum dots -
characterization, preparation and usage in biological systems. Int. J. Mol.
Sci. 10(2): 656-673.
Fujioka,
K., Hiruoka, M., Sato, K., Manabe, N., Miyasaka, R., Hanada, S., Hoshino, A.,
Tilley, R.D., Manome, Y., Hirakuri, K. & Yamamoto, K. 2008. Luminescent
passive-oxidized silicon quantum dots as biological staining labels and their
cytotoxicity effects at high concentration. Nanotechnology 19(41):
415102.
Glazman,
L.I. 2000. Single electron tunneling. Journal for Low Temperature Physics 118(5-6):
247-269.
Gosh,
C., Pal, S., Goswam, B. & Sharkar, P. 2005. Theoretical study on
size-dependent properties of GanAsn cluster. Chemical Physics Letters 407:
498-503.
Gupta,
R.K. & Saraf, V. 2009. Nanoelectronics: Tunneling current in DNA-single
electron transistor. Current Applied Physics 9: S149-S152.
Hanafi
Ithnin, Ahmad Radzi M. Isa, Mohd Khalid Kasmin & Saeed, M.A. 2012. Study of
electrostatic potential surface around bipyramidal GaAs quantum dot. Digest
Journal of Nanomaterials and Biostructures 7(4): 1787-1791.
Howes,
M.J. & Morgan, D.V. 1985. Gallium Arsenide: Materials, Devices, and
Circuits. New York: Wiley.
Huffaker,
D.L. & Deppe, D.G. 1998. Electro luminescent efficiency of 1.3 μm room
temperature GaAs-based quantum dot. Appl Phys. Lett. 73: 2564-2565.
Karamanis,
P., Begue, D. & Pouchan, C. 2007. Ab initio finite field (hyper)
polarizability computations on stoichiometric gallium arsenide clusters GanAsn
(n=2-9): Journal of Chemical Physics 127: 094706.
Karatzer,
P., Morgan, C.G. & Scheffler, M. 1998. Density functional theory studies on
microscopic processes of GaAs Growth. Progress in Surface Science 59:
135-147.
Kastner,
M.A. 2000. The single electron transistor and artificial atoms. Ann. Phys.
(Leipzig) 9(11-12): 885-894.
Kirstaedter,
N., Ledentsov, N.N., Grundmann, M., Bimberg, D., Ustinov, V.M., Ruvimov, S.S.,
Maximov, M.V., Kop’ev, P.S., Alferov Urichter, Z.I., Werner, P., Gosele, U.
& Heydenreich, J. 1994. Low threshold , large T0 injection laser
emission from (InGa)As quantum dots. Electron. Lett. 30: 1416.
Kuroda
K., Kuroda T., Watanabe K., Mano T., Kiddo G., Koguchi N., Sakoda
K., (2010). Distribution of exciton emission linewidth observed
for GaAs quantum dots grown by droplet epitaxy. Journal of Luminescence
130: 2390-2393.
Lee,
S., Shin, D.W., Kim, W.M., Cheong, B., Lee, T.S., Lee, K.S. & Cho, S. 2006.
Room temperature synthesized GaAs quantum dot embedded in SiO2 composite film. Thin
Solid Films 514: 296-301.
Li,
W.Z. & Huang, M.B. 2003. Equilibrium structures and hyperfine parameters of
some fluorinated hydrocarbon radical cations: a DFT B3LYP and MP2 study. Journal
of Molecular Structure (Theochem) 636(1-3): 71-79.
Liu,
H.C. 2003. Quantum infrared photo detector. Opto- Electronics Lev. 11(1):
1-5.
Schmidt,
M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H.,
Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M. &
Montgomery, J.A. 1993. General atomic and molecular electronic structure
system. Comput. Chem. 14: 1347-1363.
Schouteden,
K., Vandamme, N., Janssens, E., Lievens, P. & Haesendonck, C.V. 2008.
Confinement of surface state electrons in self-organized Co islands on Au(111). New J. Phys. 10: 043016.
Stevens,
W.J., Krauss, M., Basch, H. & Jasien Can, P.G. 1992. Relativistic compact
effective potential and efficient, shared-exponent basis sets for the third-,
fourth-, fifth-row atoms. J. Chem. 70: 612-630.
Sugawara,
M., Ebe, H., Hatori, N., Ishida, M., Arakawa, Y., Akiyama, T., Utsubo, K. &
Nakata, Y. 2004. Theory of optical signal amplification and processing by
quantum dot semiconductor optical amplifier. Phys. Rev. B 69: 235332.
Sun,
Y.L., Chen, X., Sun, L., Guo, X. & Lu, W. 2003. Nanoring structure and
optical properties of GA8As8. Chemical Physics Letters 381: 397-403.
*Corresponding author; email: hanafizik@gmail.com
|