Sains Malaysiana 47(11)(2018): 2789–2798
http://dx.doi.org/10.17576/jsm-2018-4711-22
Development of Nerve
Conduit using Decellularized Human Umbilical Cord Artery Seeded
with Centella asiatica Induced-Neurodifferentiated
Human Mesenchymal Stem Cell
(Perkembangan Konduit
Saraf menggunakan Arteri Tali Pusat Manusia Dinyahsel yang Disemai
dengan Centella asiatica Teraruh-Sel Saraf yang Berbeza
daripada Sel Stem Mesenkima Manusia)
HANITA MOHD
HUSSIN1,
RUSZYMAH
HAJI
IDRUS1,2
& YOGESWARAN LOKANATHAN1*
1Tissue Engineering Centre, UKM Medical
Centre, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar
Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
2Department of Physiology, UKM Medical
Centre, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar
Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
Received: 29 March 2018/Accepted:
6 July 2018
ABSTRACT
Various
natural biological conduits have been investigated to bridge peripheral
nerve injury especially in critical gap (greater than 3 cm in
human). Autograft, the current gold standard, has several drawbacks
including limited availability of donor graft, donor-site morbidity
and mismatch in size in clinical practices. The aim of this study
was to analyze the development of nerve conduit using decellularized
human umbilical cord (HUC) artery seeded with neurodifferentiated
human MSCs (ndMSCs) in bridging peripheral
nerve gap. Artery conduits obtained from HUC were decellularized to remove
native cells (n=3), then characterized by Hematoxylin and Eosin (H&E) staining
and nuclei counterstaining with DAPI. The decellularized artery
conduit was measured for every 2 weeks until 12 weeks. Next, mesenchymal
stem cells (MSCs) were differentiated into neural lineage using 400
μg/mL of Centella asiatica. Then, 1.5×106
of MSCs
or ndMSCs were seeded into decellularized artery conduit to study
cell attachment. H&E staining and nuclei counterstaining with
DAPI showed
that all cellular components were removed from the HUC arteries.
The decellularized artery conduit did not collapse and the lumen
remained rigid for 12 weeks. Immunocytochemistry analysis with
neural markers namely S100β,
P75 NGFR, MBP and GFAP showed
that MSCs had differentiated into neural lineage cells. H&E
staining showed that the seeded MSCs and ndMSCs attached to the
lumen of the conduits as early as 2 days. In conclusion, this
study showed that nerve conduit using decellularized HUC artery seeded with neurodifferentiated
human MSCs was successfully developed and have
the potential to bridge critical nerve gap.
Keywords:
C. asiatica; mesenchymal stem cells; nerve conduit; nerve injury;
umbilical cord artery
ABSTRAK
Pelbagai
konduit biologi semula jadi telah dikaji untuk menyambungkan semula
kecederaan saraf periferi terutamanya yang bersaiz kritikal (lebih
daripada 3 cm pada manusia). Rawatan piawai pada masa kini adalah
pemindahan autograf, tetapi ia mempunyai beberapa kelemahan dalam
amalan klinikal seperti kekurangan tisu penderma, morbiditi pada
tapak penderma dan saiz tisu yang tidak sepadan. Tujuan kajian
ini dijalankan adalah untuk mengkaji perkembangan konduit saraf
menggunakan arteri tali pusat manusia yang telah dinyahsel dan
disemai dengan sel saraf yang terbeza daripada sel stem mesenkima.
Konduit arteri tali pusat manusia yang telah dinyahsel (n=3) seterusnya dikaji keberkesanannya
menggunakan pewarnaan Hematoxylin dan Eosin (H&E) dan pewarnaan
nukleus oleh DAPI. Konduit arteri itu kemudiannya diukur kepanjangan
pada setiap 2 minggu sehingga 12 minggu. Aruhan pembezaan sel
saraf daripada sel stem mesenkima telah dilakukan melalui penggunaan
400 μg/mL C. asiatica. Kemudian, 1.5×106 sel stem mesenkima atau
sel saraf disemai ke dalam konduit arteri untuk mengkaji perlekatan
sel. Pewarnaan Hematoxylin dan Eosin (H&E) dan DAPI pada
nukleus menunjukkan bahawa semua komponen sel telah berjaya dinyahkan
daripada arteri tali pusat manusia. Konduit arteri itu tidak menguncup
dan lumennya kekal tegar selama 12 minggu. Analisis immunositokimia
menggunakan penanda saraf iaitu S100β,
P75 NGFR, MBP dan
GFAP
mendedahkan bahawa sel stem mesenkima telah terbeza
kepada leluhur sel saraf. Pewarnaan H&E menunjukkan bahawa
sel stem mesenkima dan sel saraf yang telah disemai melekat pada
dinding lumen konduit tersebut seawal hari ke-dua. Secara kesimpulannya,
kajian ini menunjukkan bahawa konduit saraf menggunakan arteri
tali pusat manusia dan disemai dengan sel saraf yang terbeza daripada
sel stem mesenkima telah berjaya dihasilkan dan berpotensi untuk
diimplan pada kecederaan saraf periferi bersaiz kritikal.
Kata
kunci: Arteri tali pusat; C. asiatica; kecederaan saraf; konduit saraf; sel stem mesenkima
REFERENCES
Badylak, S.F., Freytes, D.O. & Gilbert, T.W. 2009. Extracellular
matrix as a biological scaffold material: Structure and function.
Acta Biomaterialia 5(1): 1-13.
Crouzier, T., McClendon, T., Tosun, Z. & McFetridge, P.S. 2009.
Inverted human umbilical arteries with tunable wall thicknesses
for nerve regeneration. Journal of Biomedical Materials Research
Part A 89A(3): 818-828.
Deal, N.D., Griffin, J.W. & Hogan, M.V. 2012. Nerve conduits
for nerve repair or reconstruction. JAAOS-Journal of the American
Academy of Orthopaedic Surgeons 20(2): 63-68.
Deng, J., Petersen, B.E., Steindler, D.A., Jorgensen, M.L. &
Laywell, E.D. 2006. Mesenchymal stem cells spontaneously express
neural proteins in culture and are neurogenic after transplantation.
Stem Cells 24(4): 1054-1064.
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini,
F., Krause, D., Deans, R., Keating, A., Prockop, D.J. & Horwitz,
E. 2006. Minimal criteria for defining multipotent mesenchymal
stromal cells. The International Society for cellular therapy
position statement. Cytotherapy 8(4): 315-317.
Gilpin,
A. & Yang, Y. 2017. Decellularization strategies for regenerative
medicine: From processing techniques to applications. BioMed
Research International 2017: Article ID. 9831534.
Gordon, T., Sulaiman, O. & Boyd, J.G. 2003. Experimental strategies
to promote functional recovery after peripheral nerve injuries.
Journal of the Peripheral Nervous System 8(4): 236-250.
Gui, L., Muto, A., Chan, S.A., Breuer, C.K. & Niklason, L.E.
2009. Development of decellularized human umbilical arteries as
small-diameter vascular grafts. Tissue Engineering Part A 15(9):
2665-2676.
Hassan, N.H., Sulong, A.F., Ng, M..H., Htwe, O., Idrus, R.B.H., Roohi,
S., Naicker, A.S. & Abdullah, S. 2012. Neural-differentiated
mesenchymal stem cells incorporated into muscle stuffed vein scaffold
forms a stable living nerve conduit. Journal of Orthopaedic
Research 30(10): 1674- 1681.
Hidayah, N.H., Fadzli, A., Ng, M.H., Ruszymah, B.H.I., Naicker, A.S.
& Shalimar, A. 2012. Porous PLGA sheet and acellularized muscle
stuffed vein seeded with neural-differentiated MSCs are potential
scaffolds for nerve regeneration. Regen. Res. 1: 1-7.
Höke, A. 2006. Mechanisms of disease: What factors limit the success
of peripheral nerve regeneration in humans? Nature Reviews
Neurology 2(8): 448-454.
Jadalannagari, S. & Aljitawi, O.S. 2015. Ectodermal differentiation
of Wharton’s jelly mesenchymal stem cells for tissue engineering
and regenerative medicine applications. Tissue Engineering
Part B: Reviews 21(3): 314-322.
Jamil, S.S., Nizami, Q. & Mehboobus, S. 2007. Centella asiatica
(Linn.) Urban: A review. Natural Product Radiance
6(2): 158-170.
Jiang, H., Zheng, G., Junwei, L.V., Chen, H., Jinjin, L., Li, Y.,
Fan, G. & Ding, X. 2016. Identification of Centella asiatica’s
effective ingredients for inducing the neuronal differentiation.
Evid. Based Complement. Alternat. Med. 2016: Article ID.
9634750.
Kaizawa, Y., Kakinoki, R., Ikeguchi, R., Ohta, S., Noguchi, T., Oda,
H. & Matsuda, S. 2016. Bridging a 30 mm defect in the canine
ulnar nerve using vessel-containing conduits with implantation
of bone marrow stromal cells. Microsurgery 36(4): 316-324.
Kaizawa, Y., Kakinoki, R., Ikeguchi, R., Ohta, S., Noguchi, T., Takeuchi,
H., Oda, H., Yurie, H. & Matsuda, S. 2017. A nerve conduit
containing a vascular bundle and implanted with bone marrow stromal
cells and decellularized allogenic nerve matrix. Cell Transplantation
26(2): 215-228.
Kehoe, S., Zhang, X. & Boyd, D. 2012. FDA approved guidance conduits
and wraps for peripheral nerve injury: A review of materials and
efficacy. Injury 43(5): 553-572.
Liao, I.C., Wan, H., Qi, S., Cui, C., Patel, P., Sun, W. & Xu,
H. 2013. Preclinical evaluations of acellular biological conduits
for peripheral nerve regeneration. Journal of Tissue Engineering
4: 2041731413481036.
Lim, J., Razi, Z.R.M., Law, J., Azmawati, Mohammed Nawi., Haji Idrus,
Ruszymah. & Ng. Min Hwei. 2016. MSCs can be differentially
isolated from maternal, middle and fetal segments of the human
umbilical cord. Cytotherapy 18(12): 1493-1502.
Liu, Z., Jin, Y.Q., Chen, L., Wang, Y., Yang, X., Cheng, J., Wu,
W., Qi, Z. & Shen, Z. 2015. Specific marker expression and
cell state of Schwann cells during culture in vitro. PLoS
One 10(4): e0123278.
Lokanathan, Y., Ng, M.H., Shariful Hasan, Anuar Ali, Mazzre Mahmod,
Ohnmar Htwe, Sharifah Ahmad Roohi, Ruszymah, Bt Hj Idrus, Shalimar
Abdullah & Amaramalar Selvi Naicker 2014. Olfactory ensheathing
cells seeded muscle-stuffed vein as nerve conduit for peripheral
nerve repair: A nerve conduction study. Journal of Bioscience
and Bioengineering 118(2): 231-234.
Lokanathan, Y., Omar, N., Ahmad Puzi, N.N., Saim, A. & Hj Idrus,
R. 2016. Recent updates in neuroprotective and neuroregenerative
potential of Centella asiatica. Malays J. Med. Sci.
23(1): 4-14.
Mallis, P., Gontika, I., Poulogiannopoulos, T., Zoidakis, J., Vlahou,
A., Michalopoulos, E., Chatzistamatiou, T., Papassavas, A. &
Stavropoulos-Giokasa, C. 2014. Evaluation of decellularization
in umbilical cord artery. Transplantation Proceedings 46(9):
3232-3239.
Michetti, F., Corvino, V., Geloso, M.C., Lattanzi, W., Bernardini,
C., Serpero, L. & Gazzolo, D. 2012. The S100B protein in biological
fluids: More than a lifelong biomarker of brain distress. Journal
of Neurochemistry 120(5): 644-659.
Mohandas R.K., Muddanna, R.S. & Rao, S.G. 2009. Enhancement of
amygdaloid neuronal dendritic arborization by fresh leaf juice
of Centella asiatica (Linn) during growth spurt period
in rats. Evidence-Based Complementary and Alternative Medicine
6(2): 203-210.
Mohd Heikal, M., Siti Mariam, H., Mohd Ilham, A., Mee Fong, C., Aminuddin,
B.S. & Ruszymah, B.H.I. 2014. Anti-proliferative activities
of Centella asiatica extracts on human respiratory epithelial
cells in vitro. Journal of Medicinal Plants Research
8(24): 864-869.
Neuhuber, B., Swanger, S.A., Howard, L., Mackay, A. & Fischera,
I. 2008. Effects of plating density and culture time on bone marrow
stromal cell characteristics. Experimental Hematology 36(9):
1176-1185.
Noor, M.M. & Ali, N.M. 2004. Kesan in vivo ekstrak daun
Centella asiatica ke atas histologi testis dan kualiti
sperma mencit. Sains Malaysiana 33(2): 97-103.
Norazzila, O., Yogeswaran, L. & Ruszymah, B.H.I. 2017. Comparison
of cytotoxicity measurements of Centella asiatica (L.)
on human wharton’s jelly-derived mesenchymal stem cells in
vitro via mtt and prestoblue assay. Regenerative Research
5(2): 10-18.
Norazzila, O., Yogeswaran, L., Mohd Razi Zainul Rashid & Ruszymah
Idrus. 2018. The effects of Centella asiatica (L.) Urban
on neural differentiation of human mesenchymal stem cells
in vitro. Frontiers in Cellular Neuroscience doi:
10.3389/conf.fncel.2016.36.00183.
Nurlaily, A., Ar, N.B. & Musalmah, M. 2012. Comparative antioxidant
and anti-inflammatory activity of different extracts of Centella
asiatica (L.) Urban and its active compounds, asiaticoside
and madecassoside. Medicine and Health 7(2): 62-72.
Omar, N.S., Zakaria, Z.A.C., Mian Then Sue, Wan Ngah Wan Zurinah
& Musalmah Mazlan. 2011. Centella asiatica modulates
neuron cell survival by altering caspase-9 pathway. Journal
of Medicinal Plants Research 5(11): 2201-2209.
Puttarak, P., Brantner, A. & Panichayupakaranant, P. 2016. Biological
activities and stability of a standardized pentacyclic triterpene
enriched Centella asiatica extract. Natural Product
Sciences 22(1): 20-24.
Quint, C., Kondo, Y., Manson, R.J., Lawson, J.H., Dardik, A. &
Niklason, L.E. 2011. Decellularized tissue-engineered blood vessel
as an arterial conduit. Proceedings of the National Academy
of Sciences 108(22): 9214-9219.
Ray, W.Z. & Mackinnon, S.E. 2010. Management of nerve gaps: Autografts,
allografts, nerve transfers, and end-to-side neurorrhaphy. Experimental
Neurology 223(1): 77.
Rodríguez-Rodríguez, V.E., Martínez-González,
B., Quiroga- Garza, A., Reyes-Hernández, C.G., de la Fuente-Villarreal,
D., de la Garza-Castro, O., Guzmán-López, S. & Elizondo- Omaña,
R.E. 2017. Human umbilical vessels: Choosing the optimal decellularization
method. ASAIO Journal (American Society for Artificial Internal
Organs: 1992) 64(5): 575-580.
Roy, S., Silacci, P. & Stergiopulos,
N. 2005. Biomechanical proprieties of decellularized porcine common
carotid arteries. American Journal of Physiology-Heart and
Circulatory Physiology 289(4): H1567-H1576.
Ruszymah, B.H.I., Chowdhury, S.R.,
Nur Azeanty Bt Abdul Manan, Ooi Sew Fong, Mohd Ilham Adenan &
Aminuddin Bin Saim. 2012. Aqueous extract of Centella asiatica
promotes corneal epithelium wound healing in vitro.
Journal of Ethnopharmacology 140(2): 333-338.
Safwani, W.K.Z.W., Makpol, S., Sathapan,
S. & Chua, H.K. 2012. The impact of long-term in vitro
expansion on the senescence-associated markers of human adipose-derived
stem cells. Applied Biochemistry and Biotechnology 166(8):
2101-2113.
Said, M. 2009. Traditional Malaysian
salads (ulam) as a source of antioxidants. Prosiding
Seminar Kimia Bersama UKM-ITB. pp. 9-11.
Schaner, P.J., Martin, N.D., Tulenko,
T.N., Shapiro, I.M., Tarola, N.A., Leichter, R.F., Carabasi, R.A.
& DiMuzio, P.J. 2004. Decellularized vein as a potential scaffold
for vascular tissue engineering. Journal of Vascular Surgery
40(1): 146-153.
Shalaby, S.M., Amal, S., Ahmed,
F.E., Shaban, S.F., Wahdan, R.A., Kandel, W.A. & Mohammed,
S.S. 2017. Combined Wharton’s jelly derived mesenchymal stem cells
and nerve guidance conduit: A potential promising therapy for
peripheral nerve injuries. The International Journal of Biochemistry
& Cell Biology 86: 67-76.
Somboonwong, J., Kankaisre, M.,
Tantisira, B. & Tantisira, M.H. 2012. Wound healing activities
of different extracts of Centella asiatica in incision
and burn wound models: An experimental animal study. BMC Complementary
and Alternative Medicine 12(1): 103.
Soumyanath, A., Zhong, Y.P., Gold,
S.A., Yu, X., Koop, D.R., Bourdette, D. & Gold, B.G. 2005.
Centella asiatica accelerates nerve regeneration upon oral
administration and contains multiple active fractions increasing
neurite elongation in-vitro. J. Pharm. Pharmacol. 57(9):
1221-1229.
Sulong, A.F. & Hassan, N.H.
2014. Collagen-coated polylactic-glycolic acid (PLGA) seeded with
neural-differentiated human mesenchymal stem cells as a potential
nerve conduit. Adv. Clin. Exp. Med. 23: 353-362.
Sun, F., Zhou, K., Mi, W-J. &
Qiu, J-H. 2011. Combined use of decellularized allogeneic artery
conduits with autologous transdifferentiated adipose-derived stem
cells for facial nerve regeneration in rats. Biomaterials 32(32):
8118-8128.
Tiwari, S., Gehlot, S. & Gambhir,
I.S. 2011. Centella asiatica: A concise drug review with
probable clinical uses. Journal of Stress Physiology &
Biochemistry 7(1): 38-44.
Tuan-Mu, H.Y., Yu, C.H. & Hu,
J.J. 2014. On the decellularization of fresh or frozen human umbilical
arteries: Implications for small-diameter tissue engineered vascular
grafts. Annals of Biomedical Engineering 42(6): 1305-1318.
Wakao, S., Matsuse, D. & Dezawa,
M. 2014. Mesenchymal stem cells as a source of Schwann cells:
Their anticipated use in peripheral nerve regeneration. Cells
Tissues Organs 200(1): 31-41.
Wanakhachornkrai, O., Pongrakhananon,
V., Chunhacha, P., Wanasuntronwong, A., Vattanajun, A., Tantisira,
B., Chanvorachote, P. & Tantisira, M.H. 2013. Neuritogenic
effect of standardized extract of Centella asiatica ECa233
on human neuroblastoma cells. BMC Complement. Altern. Med.
13: 204.
Xu, Y., Zhang, Z., Chen, X., Li,
R., Li, D. & Feng, S. 2016. A silk fibroin/collagen nerve
scaffold seeded with a co-culture of schwann cells and adipose-derived
stem cells for sciatic nerve regeneration. PloS One 11(1):
e0147184.
Zhan, X., Gao, M., Jiang, Y., Zhang,
W.W., Wong, W.M., Yuan, Q., Su, H., Kang, X., Dai, X., Zhang,
W., Guo, J. & Wu, W. 2013. Nanofiber scaffolds facilitate
functional regeneration of peripheral nerve injury. Nanomedicine:
Nanotechnology, Biology and Medicine 9(3): 305-315.
Zhuang, Y., Li, D., Fu, J., Shi,
Q., Lu, Y. & Ju, X. 2015. Comparison of biological properties
of umbilical cord-derived mesenchymal stem cells from early and
late passages: Immunomodulatory ability is enhanced in aged cells.
Molecular Medicine Reports 11(1): 166-174.
*Corresponding author; email: lyoges@ppukm.ukm.edu.my