Sains Malaysiana 47(11)(2018): 2831–2840

http://dx.doi.org/10.17576/jsm-2018-4711-26

 

Microcontroller-Based Moisture Meter for Ginger

(Meter Kelembapan Berasaskan Mikropengawal untuk Halia)

NUR BIHA MOHAMED NAFIS1, ZULKIFLY ABBAS1*, JUMIAH HASSAN1, NORADIRA SUHAIME1, LEE KIM YEE2, YOU KOK YEOW3 & ZAULIA OTHMAN4

 

1Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2Department of Electrical and Electronic Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Setapak, Kuala Lumpur, Federal Territory, Malaysia

 

3Department of Radio Communication Engineering (RaCED), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia

 

4Bank Gene and Seed Center, Malaysian Agricultural Research and Development Institute, (MARDI) MARDI Headquarters, Persiaran MARDI-UPM, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 15 April 2018 /Accepted: 27 July 2018

 

ABSTRACT

This paper describes the development of a simple method to determine the permittivity and moisture content (m.c.) of ginger. The measurement system consists of a microwave sensor, directional coupler and a PIC microcontroller. The microwave sensor is a square flanged open-ended coaxial (OEC) sensor made from SMA stub contact panel with outer diameter (O.D) 4.10 mm. The microwave oven drying method was used to determine the actual m.c. of the ginger. All data acquisition, processing and display were accomplished using a PIC16F690 microcontroller programmed using Flowcode software. The actual values of the permittivity of ginger were obtained by using the Agilent (now Keysight Technologies) 85070B dielectric probe along with a HP 8720B Vector Network Analyzer (VNA). The results showed good relationships between m.c., permittivity (dielectric constant (εʹ) and loss factor (ε̋)) and reflected voltage. The calibration equations between reflected voltage and m.c. have been established for the sensor. The measurement system provides a simple, fast and accurate technique to predict m.c., εʹ and ε̋ of ginger from reflected voltage measurements alone. The accuracy in determination of m.c., εʹ and ε̋ in ginger was within 2.9%, 2.7%, and 3.6%, respectively.

 

Keywords: Microcontroller; moisture content; open-ended coaxial sensor; permittivity; reflected voltage

 

ABSTRAK

Kertas ini menghuraikan mengenai pembangunan satu kaedah yang mudah untuk menentukan kadar ketelusan dan kandungan lembapan (m.c.) halia. Sistem pengukuran ini terdiri daripada sensor gelombang mikro, pengandingan arah dan mikropengawal PIC. Sensor gelombang mikro adalah pengesan berpaksi terbuka bersegi empat (OEC) yang dibuat daripada panel sentuh stub SMA dengan diameter luar (O.D) 4.10 mm. Kaedah pengeringan ketuhar gelombang mikro digunakan untuk menentukan m.c. halia yang sebenar. Semua pemerolehan, pemprosesan dan paparan data telah diperoleh dengan menggunakan mikropengawal PIC 16F690 yang diprogram menggunakan perisian Flowcode. Nilai sebenar kadar ketelusan untuk halia diperoleh dengan menggunakan Agilent (sekarang Keysight Technologies) 85070B peranti deria sepaksi hujung terbuka sekali dengan penganalisis rangkaian vektor HP 8720B (VNA). Keputusan menunjukkan hubungan yang baik antara m.c., kadar ketelusan (pemalar dielektrik (εʹ) dan faktor kehilangan (ε̋)) serta voltan yang dipantulkan. Persamaan penentukuran antara voltan yang dipantulkan dan m.c. telah dibangunkan untuk sensor tersebut. Sistem pengukuran ini menyediakan teknik yang mudah, cepat dan tepat untuk meramalkan m.c., εʹ dan ε̋ halia daripada pengukuran voltan yang dipantulkan sahaja. Ketepatan dalam menentukan m.c., εʹ dan ε̋ halia adalah dalam 2.9%, 2.7% dan 3.6%.

 

Kata kunci: Kadar ketelusan; kandungan lembapan; mikropengawal; pengesan sepaksi terbuka; pantulan voltan

REFERENCES

Abbas, Z., Yeow, Y.K., Shaari, A.H., Khalid, K., Hassan, J. & Saion, E. 2005. Complex permittivity and moisture measurements of oil palm fruits using an open-ended coaxial sensor. IEEE Sensors Journal 5: 1281-1287.

Agilent Technologies. 2013. Agilent 85070E Dielectric Probe Kit. California: Agilent Technologies Inc.

AOAC. 2000. Official Methods of Analysis of the Association of Official Analytical Chemists. 17th edition. Arlington VA: AOAC International.

ASAE. 1995. Moisture Measurement - Underground seeds S352.2. 2950 Niles Road, St. Joseph, Michigan, USA. American Society of Agricultural Engineers. MI 49085-9659.

Blackham, D.V. & Pollard, R.D. 1997. An improved technique for permittivity measurements using a coaxial probe. IEEE Trans. on Instrumentation and Measurement 46: 1093-1099.

Bouraoui, M., Richard, P. & Fichtali, J. 1993. A review of M.C. determination in foods using microwave oven drying. Food Research International 26: 49-57.

Dubey, K.R. & Tiwari, S. 2008. Ginger, Production and Post-Harvest Management. http://www.indg.in/ agriculture/crop production techniques/technologies-for north-east-india/ginger-production post-harvest. pdf.

FAO. 2002. Ginger: Post-Harvest Compendium. http//www.fao.org/fileadmin/userupload/inpho/docs/post harvest compendium-Ginger.pdf.

Ginzburg, A.S. 1969. Infrared radiation in food industry (in Polish). Warsaw: WydawnictwoNaukowo-Techniczne.

Hanna Instruments. 2016. pH Measurement SOP, 877. https://hannainst.com/resources/ph/guides/ ph-measurement-sop--hanna-instruments.pdf

Isengard, H. 1995. Rapid water determination in foodstuffs. Trends in Food Science and Technology 6: 155-162.

Jusoh, M.A., Abbas, Z., Hassan, J., Azmi, B.Z. & Ahmad, A.F. 2011. A simple procedure to determine complex permittivity of moist materials using standard commercial coaxial sensor. Measurement Science Review 11: 19-22.

Kraszewski, A. 1980. Microwave aquametry - A review. Journal of Microwave Power 15: 209-220.

Kupfer, K. 2005. Electromagnetic Aquametry. Germany: Springer.

Li, J., Xue, L., Liu, M.H., Lv, P. & Yan, L.Y. 2011. Determination of moisture content in ginger using PSO combined with Vis/ NIR. Advanced Materials Research 320: 563-568.

Michael, D., Mingos, P. & Baghurst, D.R. 1991. Application of microwave dielectric heating effects to synthetics problems in chemistry. Chemical Society Reviews 20: 1-47.

Microchip. 2015. 20-Pin Flash-Based, 8-Bit CMOS Microcontrollers. http://ww1.microchip. com/downloads/en/DeviceDoc/40001262F.pdf.

Mini Circuits. 1999. Directional Couplers. Accessed from ttps:// www.minicircuits.com/app/COUP7-2.pdf.

Nagarajan, R., Singh, P. & Mehrotra, R. 2006. Direct determination of moisture in powder milk using near infrared spectroscopy. Journal of Automated Methods and Management in Chemistry 2006: Article ID. 51342.

Nelson, S.O. 2003. Frequency- and temperature-dependent permittivities of fresh fruits and vegetables from 0.01 to 1.8 GHz. Transactions of the ASAE 46: 567-574.

Nielsen, S.S. 2010. Food Analysis. 4th edition. USA: Springer.

Onu, L.I. & Okafor, G.I. 2003. Effect of physical and chemical factor variations on the efficiency of mechanical slicing of Nigerian ginger (Zingiber officinale Rose). Journal of Food Engineering 56: 43-47.

Ragni, L., Gradari, P., Berardinelli, A., Giunchi, A. & Guarnieri, A. 2006. Predicting quality parameters of shell eggs using a simple technique based on the dielectric properties. Biosystems Engineering 94: 255-262.

Rao, M.A., Datta, A.K. & Rizvi, S.S. 2005. Engineering Properties of Food. Florida: Taylor & Francis.

Ruan, R.R. & Chen, P.L. 1998. Water in Foods and Biological Materials: A Nuclear Magnetic Resonance Approach. USA: Technomic Publishing Company.

Ryynnanen, S. 1995. The electromagnetic properties of food materials: A review of the basic principles. Journal of Food Engineering 27: 409-429.

SAS Institute. 1989. SAS/STAT User’s Guide. Cary: SAS Institute.

Shukla, T.P. & Anantheswaran, R.C. 2001. Ingredient interactions and product development. In Handbook of Microwave Technology for Food Applications, edited by Datta, A.K. & Anantheswaran, R.C. New York: Marcel Dekker. pp. 355-395.

Sigma Aldrich. 2003. HYDRANAL®- Manual http://www. sigmaaldrich.com .

Sreekumar, M.M., Sankarikutty, B., Menon, A.N., Padmakumari, K.P., Sumathikutti, M.A. & Arumughan, C. 2002. Fresh flavoured spice oil and oleoresin. Spice India (English) 15: 15-19.

Thumm, M., Wiesbeck, W., Note, A., Huisman, J.A., Thakur, O.P., Singh, A.K. & Authority, S. 2012. The relationship between loss, conductivity, and dielectric constant. Advanced Studies in Theoretical Physics 46: 1-12.

USAID. 2004. Ginger, post-harvest care and market preparation. http://pdf.usaid.gov/pdf docs/PNACY839.pdf.

Venkatesh, M. & Raghavan, G. 2004. An overview of microwave processing and dielectric properties of agri-food materials. Biosystems Engineering 88: 1-18.

Yahaya, N.Z., Abbas, Z., Ibrahim, N.M., Hafizi, M.H.M. & Yahaya, M.Z. 2014. Permittivity models for determination of moisture content in Hevea Rubber Latex. International Journal of Agricultural and Biological Engineering 7: 48-54.

Yeh, R.S., Anantheswaran, R.C., Shenk, J. & Puri, V.M. 1994. Determination of moisture profile in foods during microwave heating using VIS-NIR spectroscopy. Food Science and Technology 27: 358-362.

 

*Corresponding author; email: za@upm.edu.my

 

 

 

 

 

 

 

 

previous