Sains Malaysiana 47(11)(2018): 2831–2840
http://dx.doi.org/10.17576/jsm-2018-4711-26
Microcontroller-Based Moisture Meter
for Ginger
(Meter Kelembapan Berasaskan Mikropengawal
untuk Halia)
NUR BIHA
MOHAMED
NAFIS1,
ZULKIFLY
ABBAS1*,
JUMIAH
HASSAN1,
NORADIRA
SUHAIME1,
LEE
KIM
YEE2,
YOU
KOK
YEOW3
& ZAULIA OTHMAN4
1Department of Physics, Faculty of
Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
Darul Ehsan, Malaysia
2Department of Electrical and Electronic
Engineering, Faculty of Engineering and Science, Universiti Tunku
Abdul Rahman, 53300 Setapak, Kuala Lumpur, Federal Territory,
Malaysia
3Department of Radio Communication
Engineering (RaCED), Faculty of Electrical Engineering, Universiti
Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia
4Bank Gene and Seed Center, Malaysian
Agricultural Research and Development Institute, (MARDI) MARDI
Headquarters, Persiaran MARDI-UPM, 43400 Serdang, Selangor Darul
Ehsan, Malaysia
Received: 15 April 2018 /Accepted:
27 July 2018
ABSTRACT
This paper describes the development
of a simple method to determine the permittivity and moisture
content (m.c.) of ginger. The measurement system consists of a
microwave sensor, directional coupler and a PIC microcontroller. The microwave
sensor is a square flanged open-ended coaxial (OEC)
sensor made from SMA stub contact panel with outer diameter
(O.D) 4.10 mm. The microwave oven drying method was used to determine
the actual m.c. of the ginger. All data acquisition, processing
and display were accomplished using a PIC16F690 microcontroller
programmed using Flowcode software. The actual values of the permittivity
of ginger were obtained by using the Agilent (now Keysight Technologies)
85070B dielectric probe along with a HP 8720B Vector Network Analyzer (VNA).
The results showed good relationships between m.c., permittivity
(dielectric constant (εʹ) and loss factor (ε̋))
and reflected voltage. The calibration equations between reflected
voltage and m.c. have been established for the sensor. The measurement
system provides a simple, fast and accurate technique to predict
m.c., εʹ and ε̋ of ginger from reflected
voltage measurements alone. The accuracy in determination of m.c.,
εʹ and ε̋ in ginger was within 2.9%,
2.7%, and 3.6%, respectively.
Keywords: Microcontroller;
moisture content; open-ended coaxial sensor; permittivity; reflected
voltage
ABSTRAK
Kertas ini menghuraikan mengenai
pembangunan satu kaedah yang mudah untuk menentukan kadar ketelusan
dan kandungan lembapan (m.c.) halia. Sistem pengukuran ini terdiri
daripada sensor gelombang mikro, pengandingan arah dan mikropengawal
PIC.
Sensor gelombang mikro adalah pengesan berpaksi terbuka bersegi
empat (OEC)
yang dibuat daripada panel sentuh stub SMA dengan diameter luar (O.D)
4.10 mm. Kaedah pengeringan ketuhar gelombang mikro digunakan
untuk menentukan m.c. halia yang sebenar. Semua pemerolehan, pemprosesan
dan paparan data telah diperoleh dengan menggunakan mikropengawal
PIC 16F690 yang diprogram menggunakan perisian Flowcode. Nilai
sebenar kadar ketelusan untuk halia diperoleh dengan menggunakan
Agilent (sekarang Keysight Technologies) 85070B peranti deria
sepaksi hujung terbuka sekali dengan penganalisis rangkaian vektor
HP 8720B (VNA). Keputusan menunjukkan hubungan
yang baik antara m.c., kadar ketelusan (pemalar dielektrik (εʹ)
dan faktor kehilangan (ε̋)) serta voltan yang dipantulkan.
Persamaan penentukuran antara voltan yang dipantulkan dan m.c.
telah dibangunkan untuk sensor tersebut. Sistem pengukuran ini
menyediakan teknik yang mudah, cepat dan tepat untuk meramalkan
m.c., εʹ dan ε̋ halia daripada pengukuran
voltan yang dipantulkan sahaja. Ketepatan dalam menentukan m.c.,
εʹ dan ε̋ halia adalah dalam 2.9%,
2.7% dan 3.6%.
Kata kunci: Kadar ketelusan; kandungan lembapan; mikropengawal; pengesan
sepaksi terbuka; pantulan voltan
REFERENCES
Abbas, Z., Yeow,
Y.K., Shaari, A.H., Khalid, K., Hassan, J. & Saion, E. 2005.
Complex permittivity and moisture measurements of oil palm fruits
using an open-ended coaxial sensor. IEEE Sensors Journal 5:
1281-1287.
Agilent Technologies.
2013. Agilent 85070E Dielectric Probe Kit. California: Agilent
Technologies Inc.
AOAC. 2000. Official
Methods of Analysis of the Association of Official Analytical
Chemists. 17th edition. Arlington VA: AOAC International.
ASAE. 1995. Moisture
Measurement - Underground seeds S352.2. 2950 Niles Road, St.
Joseph, Michigan, USA. American Society of Agricultural Engineers.
MI 49085-9659.
Blackham, D.V.
& Pollard, R.D. 1997. An improved technique for permittivity
measurements using a coaxial probe. IEEE Trans. on Instrumentation
and Measurement 46: 1093-1099.
Bouraoui, M., Richard,
P. & Fichtali, J. 1993. A review of M.C. determination in
foods using microwave oven drying. Food Research International
26: 49-57.
Dubey, K.R. &
Tiwari, S. 2008. Ginger,
Production and Post-Harvest Management. http://www.indg.in/
agriculture/crop production techniques/technologies-for north-east-india/ginger-production
post-harvest. pdf.
FAO. 2002. Ginger:
Post-Harvest Compendium. http//www.fao.org/fileadmin/userupload/inpho/docs/post
harvest compendium-Ginger.pdf.
Ginzburg, A.S.
1969. Infrared radiation in food industry (in Polish). Warsaw:
WydawnictwoNaukowo-Techniczne.
Hanna Instruments.
2016. pH Measurement SOP, 877. https://hannainst.com/resources/ph/guides/
ph-measurement-sop--hanna-instruments.pdf
Isengard, H. 1995.
Rapid water determination in foodstuffs. Trends in Food Science
and Technology 6: 155-162.
Jusoh, M.A., Abbas,
Z., Hassan, J., Azmi, B.Z. & Ahmad, A.F. 2011. A simple procedure
to determine complex permittivity of moist materials using standard
commercial coaxial sensor. Measurement Science Review 11:
19-22.
Kraszewski, A.
1980. Microwave aquametry - A review. Journal of Microwave
Power 15: 209-220.
Kupfer, K. 2005.
Electromagnetic Aquametry. Germany: Springer.
Li, J., Xue, L.,
Liu, M.H., Lv, P. & Yan, L.Y. 2011. Determination of moisture
content in ginger using PSO combined with Vis/ NIR. Advanced
Materials Research 320: 563-568.
Michael, D., Mingos,
P. & Baghurst, D.R. 1991. Application of microwave dielectric
heating effects to synthetics problems in chemistry. Chemical
Society Reviews 20: 1-47.
Microchip. 2015.
20-Pin Flash-Based, 8-Bit CMOS Microcontrollers. http://ww1.microchip.
com/downloads/en/DeviceDoc/40001262F.pdf.
Mini Circuits.
1999. Directional Couplers. Accessed from ttps:// www.minicircuits.com/app/COUP7-2.pdf.
Nagarajan, R., Singh, P. & Mehrotra,
R. 2006. Direct determination of moisture in powder milk using
near infrared spectroscopy. Journal of Automated Methods and
Management in Chemistry 2006: Article ID. 51342.
Nelson, S.O. 2003. Frequency- and
temperature-dependent permittivities of fresh fruits and vegetables
from 0.01 to 1.8 GHz. Transactions of the ASAE 46: 567-574.
Nielsen, S.S. 2010. Food Analysis.
4th edition. USA: Springer.
Onu, L.I. & Okafor, G.I. 2003.
Effect of physical and chemical factor variations on the efficiency
of mechanical slicing of Nigerian ginger (Zingiber officinale
Rose). Journal of Food Engineering 56: 43-47.
Ragni, L., Gradari, P., Berardinelli,
A., Giunchi, A. & Guarnieri, A. 2006. Predicting quality parameters
of shell eggs using a simple technique based on the dielectric
properties. Biosystems Engineering 94: 255-262.
Rao, M.A., Datta, A.K. & Rizvi,
S.S. 2005. Engineering Properties of Food. Florida: Taylor
& Francis.
Ruan, R.R. & Chen, P.L. 1998.
Water in Foods and Biological Materials: A Nuclear Magnetic
Resonance Approach. USA: Technomic Publishing Company.
Ryynnanen, S. 1995. The electromagnetic
properties of food materials: A review of the basic principles.
Journal of Food Engineering 27: 409-429.
SAS Institute. 1989. SAS/STAT User’s
Guide. Cary: SAS Institute.
Shukla, T.P. & Anantheswaran,
R.C. 2001. Ingredient interactions and product development. In
Handbook of Microwave Technology for Food Applications, edited
by Datta, A.K. & Anantheswaran, R.C. New York: Marcel Dekker.
pp. 355-395.
Sigma Aldrich. 2003. HYDRANAL®-
Manual http://www. sigmaaldrich.com .
Sreekumar, M.M., Sankarikutty, B.,
Menon, A.N., Padmakumari, K.P., Sumathikutti, M.A. & Arumughan,
C. 2002. Fresh flavoured spice oil and oleoresin. Spice India
(English) 15: 15-19.
Thumm, M., Wiesbeck, W., Note, A.,
Huisman, J.A., Thakur, O.P., Singh, A.K. & Authority, S. 2012.
The relationship between loss, conductivity, and dielectric constant.
Advanced Studies in Theoretical Physics 46: 1-12.
USAID. 2004. Ginger, post-harvest
care and market preparation. http://pdf.usaid.gov/pdf docs/PNACY839.pdf.
Venkatesh, M. & Raghavan, G.
2004. An overview of microwave processing and dielectric properties
of agri-food materials. Biosystems Engineering 88: 1-18.
Yahaya, N.Z., Abbas, Z., Ibrahim,
N.M., Hafizi, M.H.M. & Yahaya, M.Z. 2014. Permittivity models
for determination of moisture content in Hevea Rubber Latex. International
Journal of Agricultural and Biological Engineering 7: 48-54.
Yeh, R.S., Anantheswaran, R.C.,
Shenk, J. & Puri, V.M. 1994. Determination of moisture profile
in foods during microwave heating using VIS-NIR spectroscopy.
Food Science and Technology 27: 358-362.
*Corresponding author;
email: za@upm.edu.my