Sains Malaysiana 47(11)(2018): 2907–2916
http://dx.doi.org/10.17576/jsm-2018-4711-34
MHD Stagnation-Point Flow over a Stretching/Shrinking
Sheet in a Micropolar Fluid with a Slip Boundary
(Aliran Titik Genangan MHD terhadap
Lembaran Meregang/Mengecut dalam Bendalir Mikrokutub dengan Gelinciran
Sempadan)
SITI KHUZAIMAH
SOID1,
ANUAR
ISHAK2*
& IOAN POP3
1Faculty
of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450
UiTM Shah Alam, Selangor Darul Ehsan, Malaysia
2School
of Mathematical Sciences, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Department
of Mathematics, Babeș-Bolyai University, 400084 Cluj-Napoca,
Romania
Received: 15 January 2018/Accepted: 20 July
2018
ABSTRACT
The problem of stagnation point
flow over a stretching/shrinking sheet immersed in a micropolar
fluid is analyzed numerically. The governing partial differential
equations are transformed into a system of ordinary (similarity)
differential equation and are then solved numerically using the
boundary value problem solver (bvp4c) in Matlab software. The
effects of various parameters on the velocity and the angular
velocity as well as the skin friction coefficient and the couple
stress are shown in tables and graphs. The noticeable results
are found that the micropolar and the slip parameters decrease
the skin friction coefficient and the couple stress in the existence
of magnetic field. Dual solutions appear for certain range of
the shrinking strength. A stability analysis is performed to determine
which one of the solutions is stable. Practical applications include
polymer extrusion, where one deals with stretching of plastic
sheets and in metallurgy that involves the cooling of continuous
strips.
Keywords: Micropolar
fluid; stability analysis; stagnation point flow; stretching/shrinking
ABSTRAK
Masalah aliran titik genangan
di atas lembaran meregang/mengecut yang direndam dalam bendalir
mikrokutub dianalisis secara berangka. Persamaan menakluk pembezaan
separa dijelmakan menjadi sistem persamaan pembezaan biasa (keserupaan)
dan kemudian diselesaikan secara berangka menggunakan penyelesai
masalah nilai sempadan (bvp4c) dalam perisian Matlab. Kesan pelbagai
parameter terhadap profil halaju dan halaju sudut serta pekali
geseran kulit dan tegasan kupel ditunjukkan dalam jadual dan graf.
Hasil yang ketara didapati bahawa parameter mikrokutub dan gelinciran
menurunkan pekali geseran kulit dan tegasan kupel dengan kehadiran
medan magnet. Penyelesaian dual diperoleh untuk kekuatan tertentu
regangan. Analisis kestabilan dilakukan untuk menentukan penyelesaian
mana yang stabil antara dua penyelesaian yang diperoleh ini. Aplikasi
praktikal termasuk penyemperitan polimer dengan peregangan lembaran
plastik dan metalurgi yang melibatkan penyejukan jalur berterusan.
Kata kunci: Aliran titik genangan; analisis kestabilan; bendalir
mikrokutub; meregang/mengecut
REFERENCES
Abbas, N., Saleem,
S., Nadeem, S., Alderremy, A.A. & Khan, A.U. 2018. On stagnation
point flow of a micro polar nanofluid past a circular cylinder
with velocity and thermal slip. Result in Physics 9: 1224-1232.
Ahmadi, G. 1976.
Self-similar solution of incompressible micropolar boundary layer
flow over a semi-infinite plate. International Journal of Engineering
Science 14: 639-646.
Aman, F., Ishak,
A. & Pop, I. 2013a. MHD stagnation point flow of a micropolar
fluid toward a vertical plate with a convective surface boundary
condition. Bulletin of the Malaysian Mathematical Sciences
Society 36: 865-879.
Aman, F., Ishak,
A. & Pop, I. 2013b. Magnetohydrodynamic stagnation-point flow
towards a stretching/shrinking sheet with slip effects. International
Communications in Heat and Mass Transfer 47: 68-72.
Andersson, H.I.
1995. An exact solution of the Navier-Stokes equations for magnetohydrodynamic
flow. Acta Mechanica 113: 241-244.
Awaludin, I.S.,
Weidman, P.D. & Ishak, A. 2016. Stability analysis of stagnation-point
flow over a stretching/shrinking sheet. AIP Advances 6:
045308.
Basir, M.F.M.,
Uddin, M.J. & Ismail, A.I.M. 2017. Unsteady magnetoconvective
flow of bionanofluid with zero mass flux boundary condition. Sains
Malaysiana 46(2): 327-333.
Borrelli, A., Giantesio,
G. & Patria, M.C. 2015. MHD orthogonal stagnation-point flow
of a micropolar fluid with the magnetic field parallel to the
velocity at infinity. Applied Mathematics and Computation 264:
44-60.
Chakrabarti, A.
& Gupta, A.S. 1979. Hydromagnetic flow and heat transfer over
a stretching sheet. Quarterly of Applied Mathematics 37:
73-78.
Chiam, T.C. 1995.
Hydromagnetic flow over a surface stretching with a power-law
velocity. International Journal of Engineering Science 33:
429-435.
Das, K. 2012. Slip
effects on MHD mixed convection stagnation point flow of a micropolar
fluid towards a shrinking vertical sheet. Computers & Mathematics
with Applications 63: 255-267.
Eringen, A.C. 1966.
Theory of micropolar fluids. Journal of Mathematics and Mechanics
16: 1-18.
Fisher, E.G. 1976.
Extrusion of Plastics. New York: Wiley.
Hafidzuddin, E.H.,
Nazar, R., Arifin, N.M. & Pop, I. 2015. Numerical solutions
of boundary layer flow over an exponentially stretching/shrinking
sheet with generalized slip velocity. International Journal
of Mathematical, Computation, Physical, Electrical and Computer
Engineering 9(4): 240-245.
Hiemenz, K. 1911.
Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom
eingetauchten geraden Kreiszylinder. Dinglers Polytech Journal
326: 321-324.
Imran, M.A., Riaz,
M.B., Shah, N.A. & Zafar, A.A. 2018. Boundary layer flow of
MHD generalized Maxwell fluid over an exponentially accelerated
infinite vertical surface with slip and Newtonian heating at the
boundary. Results in Physics 8: 1061-1067.
Ishak, A. 2011.
MHD boundary layer flow due to an exponentially stretching sheet
with radiation effect. Sains Malaysiana 40(4): 391-395.
Ishak, A., Lok,
Y.Y. & Pop, I. 2010. Stagnation-point flow over a shrinking
sheet in a micropolar fluid. Chemical Engineering Communications
197: 1417-1427.
Ishak, A., Nazar,
R. & Pop, I. 2009. Dual solutions in mixed convection boundary
layer flow of micropolar fluids. Communications in Nonlinear
Science and Numerical Simulation 14: 1324-1333.
Ishak, A., Nazar,
R. & Pop, I. 2008. MHD boundary-layer flow due to a moving
extensible surface. Journal of Engineering Mathematics 62:
23-33.
Jena, S.K. &
Mathur, M.N. 1981. Similarity solutions for laminar free convection
flow of a thermomicropolar fluid past a non-isothermal vertical
flat plate. International Journal of Engineering Science 19:
1431-1439.
Peddieson, J.J.
1972. An application of the micropolar fluid model to the calculation
of a turbulent shear flow. International Journal of Engineering
Science 10: 23-32.
Lok, Y.Y., Amin,
N., Campean, D. & Pop, I. 2005. Steady mixed convection flow
of a micropolar fluid near the stagnation point on a vertical
surface. International Journal of Numerical Methods for Heat
& Fluid Flow 15(7): 654-670.
Malvandi, A., Hedayati,
F. & Ganji, D.D. 2014. Slip effects on unsteady stagnation
point flow of a nanofluid over a stretching sheet. Powder Technology
253: 377-384.
Mat Yasin, M.H.,
Ishak, A. & Pop, I. 2017. Boundary layer flow and heat transfer
past a permeable shrinking surface embedded in a porous medium
with a second-order slip: A stability analysis. Applied Thermal
Engineering 115: 1407-1411.
Meeten, G.H. 2004.
Squeeze flow of soft solids between rough surfaces. Rheology
Acta 43: 6-16.
Merkin, J.H. 1985.
On dual solutions occurring in mixed convection in a porous medium.
Journal of Engineering Mathematics 20: 171-179.
Mooney, M. 1931.
Explicit formulas for slip and fluidity. Journal of Rheology
(1929-1932) 2(2) : 210-222.
Nair, K.A. &
Sameen, A. 2015. Experimental study of slip flow at the fluid-porous
interface in a boundary layer flow. Procedia IUTAM 15:
293-299.
Najib, N., Bachok,
N., Arifin, N.M. & Ishak, A. 2014. Stagnation point flow and
mass transfer with chemical reaction past a stretching/shrinking
cylinder. Scientific Report 4(4178): 1-7.
Nazar, R.,
Amin, N., Filip, D. & Pop, I. 2004. Stagnation
point flow of a micropolar fluid towards a stretching sheet. International
Journal of Non-Linear Mechanics 39: 1227- 1235.
Papautsky, I.,
Brazzle, J., Ameel, T. & Frazier, A.B. 1999. Laminar fluid
behavior in microchannels using micropolar fluid theory. Sensors
and Actuators A: Physical 73(1-2) : 101-108.
Rahmati, A.R., Akbari, O.A., Marzban,
A., Toghraie, D., Karimi, R. & Pourfattah, F. 2018. Simultaneous
investigations the effects of non-Newtonian
nanofluid flow in different volume fractions of solid nanoparticles
with slip and no-slip boundary conditions. Thermal Science
and Engineering Progress 5: 263-277.
Roşca,
N.C. & Pop, I. 2013. Mixed convection stagnation point flow
past a vertical flat plate with a second order slip: Heat flux
case. International Journal of Heat and Mass Transfer 65:
102-109.
Sajid,
M., Mahmood, K. & Abbas, Z. 2012. Axisymmetric stagnation-point
flow with a general slip boundary condition over a lubricated
surface. Chinese Physics Letters 29(2): 0247021-0247024.
Shercliff,
J.A. 1965. A Textbook of Magnetohydrodynamics. Oxford:
Pergamon Press.
Shu,
J.J. & Lee, J.S. 2008. Fundamental solutions for micropolar
fluids. Journal of Engineering Mathematics 61(1) : 69-79.
Tretheway,
D.C. & Meinhart, C.D. 2002. Apparent fluid slip at hydrophobic
microchannel walls. Physics of Fluids 14(3) : L9-L12.
Uddin,
M.J., Alginahi, Y., Beg, O.A. & Kabir, M.N. 2016. Numerical
solutions for gyrotactic bioconvection in nanofluid-saturated
porous media with Stefan blowing and multiple slip effects. Computers
and Mathematics with Applications 72(10): 2562-2581.
Wang
C.Y. 2008. Stagnation flow towards a shrinking sheet. International
Journal of Non-Linear Mechanics 43: 377-382.
Wang,
C.Y. 2003. Stagnation flows with slip: Exact solutions of the
Navier-Stokes equations. Zeitschrift für Angewandte Mathematik
und Physik (ZAMP) 54(1): 184-189.
Weidman,
P. 2016. Axisymmetric rotational stagnation point flow impinging
on a radially stretching sheet. International Journal of Non-Linear
Mechanics 82: 1-5.
Yacob,
N.A., Ishak, A. & Pop, I. 2011. Melting heat transfer in boundary
layer stagnation-point flow towards a stretching/ shrinking sheet
in a micropolar fluid. Computers and Fluids 47(1): 16-21.
Yoshimura,
A. & Prud’homme, R.K. 1988. Wall slip corrections for couette
and parallel disk viscometers. Journal of Rheology 32:
53-67.
Zaimi,
K., Ishak, A. & Pop, I. 2014. Boundary layer flow and heat
transfer over a nonlinearly permeable stretching/shrinking sheet
in a nanofluid. Scientific Reports 4(4404): 1-8.
*Corresponding author; email: anuar_mi@ukm.edu.my