Sains Malaysiana 47(6)(2018): 1117–1122
http://dx.doi.org/10.17576/jsm-2018-4706-06
Synthesis
and Thermal Properties of Poly(ethylene
glycol)-polydimetylsiloxane Crosslinked Copolymers
(Sintesis
dan Sifat Terma Kopolimer Taut Silang Poli(etilena
glikol)-polidimetilsiloksana)
AIN ATHIRAH ZAINUDDIN1, RIZAFIZAH OTHAMAN1, WAN SYAIDATUL AQMA WAN MOHD NOOR1, TAKENO AKIYOSHI2, TAKAHASHI SHINYA2 & FARAH HANNAN ANUAR1*
1School of Chemical
Sciences and Food Technology, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
2Department of
Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University
1-1 Yanagifo, Gifu-shi, Gifu 501-1193, Japan
Received:
15 September 2017/Accepted: 28 November 2017
ABSTRACT
Poly(ethylene glycol)-polydimethylsiloxane (PEG-PDMS)
crosslinked copolymers with mol ratios PEG:PDMS:Glycerol
of 5:3:2, 6:2:2 and 7:1:2 have been prepared and characterized. The synthesis
of the copolymers was carried out by the reaction between hydroxyl groups of PEG, PDMS and glycerol with isocyanate groups of 1,6-hexamethyelene
diisocyanate (HMDI). In the reaction, glycerol was acted as the cross
linker. The copolymers were then characterized by FTIR spectroscopy.
The thermal behaviour was investigated by DSC and TGA.
Based on FTIR results, the crosslinked structure of the copolymers
was confirmed by the presence of absorption peak at 3350 and 1710 cm-1 which
indicated the (-N-H) stretching and carbonyl (-C=O) correspond to urethane
links. This showed that the hydroxyl groups of PEG, PDMS and glycerol have reacted to isocyanate groups of HMDI.
The copolymers showed melting temperature (Tm) of PEG segments from 22°C to 27°C and glass transition temperature (Tg)
from -11°C to -6°C. Meanwhile, the PDMS segment showed values from
-53°C to -56°C for Tm, and Tg from
-118°C to -122°C. Data obtained from the thermal analysis indicate that thermal
stability increases with increasing PDMS mol ratio.
Keywords: Crosslinked copolymer; polydimethylsiloxane; poly(ethylene glycol); thermal
ABSTRAK
Kopolimer taut silang poli(etilena
glikol)-polidimetilsiloksana (PEG-PDMS) dengan nisbah PEG:PDMS:Gliserol
5:3:2, 6:2:2 dan 7:1:2 telah disediakan dan dicirikan. Sintesis
kopolimer dilakukan dengan tindak balas kumpulan hidroksi PEG, PDMS dan gliserol dengan kumpulan isosianat 1,6-heksametilena
diisosianat (HMDI). Dalam tindak balas ini,
gliserol berperanan sebagai agen taut silang. Kesemua
kopolimer kemudiannya dicirikan oleh spektroskopi inframerah (FTIR). Ciri terma kopolimer dilihat berdasarkan analisis kalorimetri
imbasasan kebezaan (DSC) dan analisis termogravimetrik (TGA). Berdasarkan spektrum inframerah, struktur taut silang kopolimer ditentukan oleh
kehadiran puncak serapan pada 3350 dan 1710 cm-1 yang
menunjukkan regangan (-N-H) dan kumpulan karbonil (-C=O) yang sepadan dengan
pautan uretana. Ini menunjukkan bahawa kumpulan hidroksi PEG, PDMS dan gliserol telah bertindak balas dengan kumpulan isosianat HMDI. Kopolimer menunjukkan suhu lebur (Tm)
bagi segmen PEG daripada 22°C hingga 27°C dan suhu peralihan kaca (Tg)
daripada -11°C hingga -6°C. Sementara itu, segmen PDMS menunjukkan
nilai daripada -53°C hingga -56°C untuk Tm, dan Tg daripada
-118°C hingga -122°C. Kestabilan degradasi kopolimer pula meningkat apabila
nisbah mol PDMS meningkat.
Kata kunci: Kopolimer taut silang;
polidimetilsiloksana; poli(etilena glikol); terma
REFERENCES
Askari, F., Barikani, M.,
Barmar, M., Shokrolahi, F. & Vafayan, M. 2015. Study of thermal stability
and degradation kinetics of polyurethane-ureas by thermogravimetry. Iran
Polym. J. 24(9): 783-789.
Badri, K., Mohd Dawi, L.I. & Abd Aziz, N.A.
2013. Rigid polyurethane foam from glycolysed polyethylene terephthalate
dissolved in palm-based polyol. Sains Malaysiana 42(4): 449-457.
Chattopadhyay, D.K. & Webster, D.C. 2009.
Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci.
34: 1068-1133.
Chuang, F., Tsen, W. & Shu, Y. 2004. The effect of different siloxane
chain-extenders on the thermal degradation and stability of seg-mented
polyurethanes. Polym. Degrad. Stab. 84: 69-77.
Clarson, S.J. & Semlyen, J.A. 1993. Siloxane Polymers. Englewood
Cliffs, NJ: Prentice Hall.
Hamdani, S., Longuet, C., Perrin, D.,
Lopez-cuesta, J.M. & Ganachaud, F. 2009. Flame retardancy of silicone-based materials. Polym. Degrad.
Stab. 94: 465-495.
Hong, Y., Guan, J., Fujimoto, K.L., Hashizume,
L., Pelinescu, A.L. & Wagner, W.R. 2010. Tailoring the degradation kinetics of poly(ester
carbonate urethane)urea thermoplastic elastomers for tissue engineering
scaffolds. Biomaterials 31(15): 4249-4258.
Hood, M.A., Wang, B., Sands, J.M., La Scala, J.J.,
Beyer, F.L. & Li, C.Y. 2010. Morphology
control of segmented polyurethanes by crystallization of hard and soft
segments. Polymer 51: 2191-2198.
Król, P., Pielichowska, K. & Byczynski, L.
2010. Thermal degradation kinetics
of polyurethane-siloxane anionomers. Thermochim Acta 91: 507-508.
Kawai, F. 1987. The biochemistry of degradation
of polyethers. Crit. Rev. Biotechnol. 6(3): 273-307.
Kawai, F. & Enokibara, S. 1996. Symbiotic degradation of
polyethylene glycol (peg) 20,000-phthalate polyester by phthalate ester- and
peg 20,000-utilizing bacteria. J. Ferment. Bioeng. 82(6): 575-579.
Rangel-Vazquez, N.A. & Sanchez-Lopez, C.
2014. Spectroscopy analyses of
polyurethane/polyaniline IPN using computational simulation (Amber, MM+ and PM3 Method). Polimeros 24(4): 453-463.
Shokrolahi, F. & Yeganeh, H. 2014. Soft segment composition
and its influence on phase-separated morphology of PCL/ PEG-based poly(urethane urea)s. Iran Polym. J. 23: 505-512.
Sung-Il, L., Youn-Sik, L., Kee, S.N., Yoon, B.H.
& Seuk-Beum, K. 2000. Degradable polyurethanes
synthesized from poly(butylene succinate) polyol,
poly(ethylene glycol), and 4,4’-Methylenebis(cyclohexyl isocyanate). Bull.
Korean Chem. Soc. 21(11): 1145-1148.
Tyagi, D., Yilgor, I., McGrathm, J.E. &
Wilkes, G.L. 1984. Segmented organosiloxane
copolymers. 2. Thermal and mechanical properties of siloxane-urea copolymers. Polymer 25: 1807-1816.
Wang, C.B. & Cooper, S.L. 1983. Morphology
and properties of segmented polyether polyurethaneureas. Macromolecules 16: 775-786.
Wang, F., Li, Z., Lannutti, J.L., Wagner, W.R.
& Guan, J. 2009. Synthesis,
characterization and surface modification of low moduli poly(ether
caarbonate urethane)ureas for soft tissue engineering. Acta Biomater. 5:
2901-2912.
Wong, C.S. & Badri, K. 2010. Sifat terma dan kerintangan api poliuretana berasaskan minyak isirung sawit dan minyak
kacang soya. Sains Malaysiana 39(5): 775-784.
Wu, L., You, B., Li, D. & Qian, F. 2000. The in vitro and in vivo stability of poly(urethane urea)s as biomedical materials. Polym.
Degrad. Stab. 70: 65-69.
Yeh, J.T. & Shu, Y.C. 2010. Characteristics of the degradation
and improvement of the thermal stability of poly(siloxane
urethane) copolymers. J. Appl. Polym. Sci. 115: 2616-2628.
Zhang, X.M., Li, L. & Zhang, Y. 2013. Study on the
surface structure and properties of PDMS/PMMA antifouling coatings. Physics
Procedia. 50: 328-336.
*Corresponding
author; email: farahhannan@ukm.edu.my
|