Sains Malaysiana 47(6)(2018): 1235–1240
http://dx.doi.org/10.17576/jsm-2018-4706-19
Effect
of Gamma Irradiation on the Physical Stability of DPPC Liposomes
(Kesan
Sinaran Gama ke atas Kestabilan Fizikal Liposom DPPC)
LIYANA MOHD ALI NAPIA1, IRMAN ABDUL RAHMAN1,2*, MOHD YUSOF HAMZAH3,
FAIZAL MOHAMED1,2, HUR MUNAWAR KABIR MOHD1, INTAN SYAKEELA AHMAD BASTAMAM1, SHAMELLIA SHARIN1, NORSYAHIDAH MOHD HIDZIR1,2
& SHAHIDAN RADIMAN1,2
1School of Applied
Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Nuclear Technology
Research Center, School of Applied Physics, Faculty of Science and Technology
Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor Darul Ehsan
Malaysia
3Nanotechnology
Laboratory Radiation Technology Division, Agensi Nuklear Malaysia
43000 Kajang, Selangor Darul Ehsan, Malaysia
Received: 15 September 2016/Accepted: 17 March 2017
ABSTRACT
Unilamellar liposomes composed of dipalmitoylphosphatidylcholine (DPPC)
were prepared by the reverse-phase evaporation method and extrusion through a
polycarbonate membrane filter. Liposomes at 0.7 mg/mL lipid concentration in
deionized water were exposed to gamma irradiation at a dose in the range 0.5 to
25 kGy. Gamma irradiation of liposomes resulted in the degradation of DPPC lipids into free fatty acids, lysophosphatidylcholine and
1,2-palmitoyl-phosphatidic acid (DPPA). The effect of gamma
irradiation towards the physical stability of liposomes was investigated by
means of dynamic light scattering (DLS), transmission electron
microscopy (TEM) and zeta potential analysis. From the DLS analysis,
no significant changes were observed in the hydrodynamic size of liposomes. TEM images
indicate that the liposomes surface became smoother and rounder as higher
irradiation doses were applied. Zeta potential analysis showed that gamma
irradiation of DPPC liposomes at radiation doses as
low as 0.5 kGy resulted in a drastic rise in the magnitude of the zeta
potential. The results also demonstrate that gamma irradiation of liposomes
suspension enhanced the overall stability of liposomes. Hence, it can be
concluded that gamma irradiation on DPPC liposomes may potentially
produce liposomes with higher stability.
Keywords: Dipalmitoylphosphatidylcholine (DPPC);
gamma irradiation; physical stability; zeta potential
ABSTRAK
Liposom unilamela yang terbentuk daripada lipid dipalmitoilfosfatidilkolina
(DPPC) telah dihasilkan menggunakan
kaedah penyejatan fasa-berbalik dan penerobosan menerusi turas membran
polikarbonat. Ampaian liposom dengan kepekatan lipid 0.7 mg/mL di
dalam air ternyah ion dipancarkan sinaran gama pada dos 0.5 hingga
25 kGy. Penyinaran gama ke atas liposom menyebabkan degradasi lipid
DPPC kepada
asid lemak bebas, lisofosfatidilkolina dan 1,2-palmitoil-asid fosfatidik
(DPPA).
Kesan penyinaran gama terhadap kestabilan fizikal liposom dikaji
menggunakan analisis penyerakan cahaya dinamik (DLS), mikroskop elektron transmisi
(TEM) dan penganalisis keupayaan zeta. Daripada analisis
DLS,
tiada perubahan pada saiz liposom dapat dikenal pasti. Imej TEM menunjukkan
bahawa permukaan liposom semakin licin dan semakin membulat apabila
semakin tinggi dos penyinaran dikenakan ke atas liposom. Analisis
keupayaan zeta mendedahkan bahawa penyinaran gama ke atas liposom
DPPC pada
dos serendah 0.5 kGy menyebabkan peningkatan drastik terhadap magnitud
keupayaan zeta. Hasil analisis ini juga menunjukkan bahawa penyinaran
gama ke atas ampaian liposom berupaya untuk meningkatkan kestabilan
liposom. Oleh itu, penyinaran gama ke atas liposom DPPC boleh menghasilkan liposom
yang berkestabilan tinggi.
Kata kunci: Dipalmitoilfosfatidilkolina (DPPC); kestabilan fizikal; keupayaan zet;
penyinaran gama
REFERENCES
Ainee, F.A., Irman, A.R., Hur Munawar, K.M.,
Faizal, M., Shahidan R. & Muhamad S.Y. 2015. Interaction of hyaluronic acid
(HA) with dipalmitoylphosphatidylcholine (DPPC) and its effect on the stability
of HA-lipid to gamma irradiation. Malaysian Journal of Analytical Sciences 19(1):
173-178.
Albertini, G. & Rustichelli, F. 1993.
Effects of gamma irradiation on the liposomal structure. Liposome
Technology. 2nd ed. edited by Gregoriadis, G. Boca Raton: CRC Press. 1:
399- 429.
Barber, D.J.W. & Thomas, J.K. 1978.
Reactions of radicals with lecithin bilayers. Radiation Research 74(1):
51-65.
Erdogan, S., Ozer, A.Y., Ekizoglu, M., Ozalp,
M., Colak, S. & Korkmaz, M. 2006. Gamma irradiation of liposomal
phospholipids. FABAD J. Pharm. Sci. 31: 182-190.
Grit, M., Underberg, W.J.M. & Crommelin, D.J.A.
1993a. Hydrolysis of saturated soybean phosphatidylcholine in aqueous liposome
dispersions. Journal of Pharmaceutical Sciences 82(4): 362-366.
Grit, M., Zuidam, N.J. & Crommelin, D.J.A.
1993b. Analysis and hydrolysis kinetics of phospholipids in aqueous liposome
dispersions. Liposome Technology. 2nd ed. edited by Gregoriadis, G. Boca
Raton: CRC Press. 1: 455-487.
Grit, M., Zuidam, N.J., Underberg, W.J.M. &
Crommelin, D.J.A. 1993c. Hydrolysis of partially saturated egg
phosphatidylcholine in aqueous liposome dispersions and effect of cholesterol
incorporation on hydrolysis kinetics. Journal of Pharmacy and Pharmacology 45(6):
490-495.
Hur, M.K.M., Ainee, F.A., Faizal, M.,
Nursaidatul, S.K., Ng, W.L., Poh, R.J., Muhamad, S.Y., Mohd, H.M.I., Suria, R.,
Shahidan, R. & Irman, A.R. 2013. The effect of gamma irradiation on the
chemical structure and surface characteristics of dipalmitoyl
phosphatidylcholine (DPPC). Malaysian Journal of Analytical Sciences 17(3):
454-460.
Pamplona, R. 2008. Membrane phospholipids,
lipoxidative damage and molecular integrity: A causal role in aging and
longevity. Biochimica et Biophysica Acta (BBA)- Bioenergetics 1777(10):
1249-1262.
Schneider, C. 2009. An update on products and
mechanisms of lipid peroxidation. Molecular Nutrition & Food Research 53(3):
315-321.
Stark,
G. 1991. The effect of ionizing radiation on lipid membranes. Biochimica et
Biophysica Acta 1071: 103-122.
Szczes,
A. 2016. Effect of the enzymatically modified supported
dipalmitoylphosphatidylcholine (DPPC) bilayers on calcium carbonate formation. Colloid
and Polymer Science 294(2): 409-419.
Szoka,
F. & Papahadjopoulos, D. 1978. Procedure for preparation of liposomes with
large internal aqueous space and high capture by reverse-phase evaporation. Proceedings
of the National Academy of Sciences 75(9): 4194-4198.
Tinsley,
P.W. & Maerker, G. 1993. Effect of low-dose g-radiation on individual
phospholipids in aqueous suspension. Journal of American Oil Chemists’
Society 70(2): 187-191.
Ulanski,
P. & Rosiak, J.M. 1999. The use of radiation technique in the synthesis of
polymeric nanogels. Nuclear Instruments and Methods in Physics Research B:
Beam Interactions with Materials and Atoms 151(1): 356-360.
Van
der Paal, J., Neyts, E.C., Verlackt, C.C.W. & Bogaerts, A. 2016. Effect of
lipid peroxidation on membrane permeability of cancer and normal cells
subjected to oxidative stress. Chemical Science 7(1): 489-498.
Vernooij,
E.A.A.M., Bosch, J.J.K. & Crommelin, D.J.A. 2002. Fourier transform
infrared spectroscopic determination of the hydrolysis of poly (ethylene
glycol)- phosphatidylethanolamine-containing liposomes. Langmuir 18(9):
3466-3470.
Zuidam,
N.J., Versluis, C., Vernooy, E.A.A.M. & Crommelin, D.J.A. 1996.
Gamma-irradiation of liposomes composed of saturated phospholipids. Effect of
bilayer composition, size, concentration and absorbed dose on chemical
degradation and physical destabilization of liposomes. Biochimica et
Biophysica Acta (BBA)-Biomembranes 1280(1): 135-148.
*Corresponding
author; email: irman@ukm.edu.my
|