Sains Malaysiana 47(6)(2018): 1235–1240

http://dx.doi.org/10.17576/jsm-2018-4706-19

 

Effect of Gamma Irradiation on the Physical Stability of DPPC Liposomes

(Kesan Sinaran Gama ke atas Kestabilan Fizikal Liposom DPPC)

 

LIYANA MOHD ALI NAPIA1, IRMAN ABDUL RAHMAN1,2*, MOHD YUSOF HAMZAH3,

FAIZAL MOHAMED1,2, HUR MUNAWAR KABIR MOHD1, INTAN SYAKEELA AHMAD BASTAMAM1, SHAMELLIA SHARIN1, NORSYAHIDAH MOHD HIDZIR1,2

& SHAHIDAN RADIMAN1,2

 

1School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Nuclear Technology Research Center, School of Applied Physics, Faculty of Science and Technology Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor Darul Ehsan

Malaysia

 

3Nanotechnology Laboratory Radiation Technology Division, Agensi Nuklear Malaysia

43000 Kajang, Selangor Darul Ehsan, Malaysia

 

Received: 15 September 2016/Accepted: 17 March 2017

 

ABSTRACT

Unilamellar liposomes composed of dipalmitoylphosphatidylcholine (DPPC) were prepared by the reverse-phase evaporation method and extrusion through a polycarbonate membrane filter. Liposomes at 0.7 mg/mL lipid concentration in deionized water were exposed to gamma irradiation at a dose in the range 0.5 to 25 kGy. Gamma irradiation of liposomes resulted in the degradation of DPPC lipids into free fatty acids, lysophosphatidylcholine and 1,2-palmitoyl-phosphatidic acid (DPPA). The effect of gamma irradiation towards the physical stability of liposomes was investigated by means of dynamic light scattering (DLS), transmission electron microscopy (TEM) and zeta potential analysis. From the DLS analysis, no significant changes were observed in the hydrodynamic size of liposomes. TEM images indicate that the liposomes surface became smoother and rounder as higher irradiation doses were applied. Zeta potential analysis showed that gamma irradiation of DPPC liposomes at radiation doses as low as 0.5 kGy resulted in a drastic rise in the magnitude of the zeta potential. The results also demonstrate that gamma irradiation of liposomes suspension enhanced the overall stability of liposomes. Hence, it can be concluded that gamma irradiation on DPPC liposomes may potentially produce liposomes with higher stability.

 

Keywords: Dipalmitoylphosphatidylcholine (DPPC); gamma irradiation; physical stability; zeta potential

 

ABSTRAK

Liposom unilamela yang terbentuk daripada lipid dipalmitoilfosfatidilkolina (DPPC) telah dihasilkan menggunakan kaedah penyejatan fasa-berbalik dan penerobosan menerusi turas membran polikarbonat. Ampaian liposom dengan kepekatan lipid 0.7 mg/mL di dalam air ternyah ion dipancarkan sinaran gama pada dos 0.5 hingga 25 kGy. Penyinaran gama ke atas liposom menyebabkan degradasi lipid DPPC kepada asid lemak bebas, lisofosfatidilkolina dan 1,2-palmitoil-asid fosfatidik (DPPA). Kesan penyinaran gama terhadap kestabilan fizikal liposom dikaji menggunakan analisis penyerakan cahaya dinamik (DLS), mikroskop elektron transmisi (TEM) dan penganalisis keupayaan zeta. Daripada analisis DLS, tiada perubahan pada saiz liposom dapat dikenal pasti. Imej TEM menunjukkan bahawa permukaan liposom semakin licin dan semakin membulat apabila semakin tinggi dos penyinaran dikenakan ke atas liposom. Analisis keupayaan zeta mendedahkan bahawa penyinaran gama ke atas liposom DPPC pada dos serendah 0.5 kGy menyebabkan peningkatan drastik terhadap magnitud keupayaan zeta. Hasil analisis ini juga menunjukkan bahawa penyinaran gama ke atas ampaian liposom berupaya untuk meningkatkan kestabilan liposom. Oleh itu, penyinaran gama ke atas liposom DPPC boleh menghasilkan liposom yang berkestabilan tinggi.

 

Kata kunci: Dipalmitoilfosfatidilkolina (DPPC); kestabilan fizikal; keupayaan zet; penyinaran gama

REFERENCES

Ainee, F.A., Irman, A.R., Hur Munawar, K.M., Faizal, M., Shahidan R. & Muhamad S.Y. 2015. Interaction of hyaluronic acid (HA) with dipalmitoylphosphatidylcholine (DPPC) and its effect on the stability of HA-lipid to gamma irradiation. Malaysian Journal of Analytical Sciences 19(1): 173-178.

Albertini, G. & Rustichelli, F. 1993. Effects of gamma irradiation on the liposomal structure. Liposome Technology. 2nd ed. edited by Gregoriadis, G. Boca Raton: CRC Press. 1: 399- 429.

Barber, D.J.W. & Thomas, J.K. 1978. Reactions of radicals with lecithin bilayers. Radiation Research 74(1): 51-65.

Erdogan, S., Ozer, A.Y., Ekizoglu, M., Ozalp, M., Colak, S. & Korkmaz, M. 2006. Gamma irradiation of liposomal phospholipids. FABAD J. Pharm. Sci. 31: 182-190.

Grit, M., Underberg, W.J.M. & Crommelin, D.J.A. 1993a. Hydrolysis of saturated soybean phosphatidylcholine in aqueous liposome dispersions. Journal of Pharmaceutical Sciences 82(4): 362-366.

Grit, M., Zuidam, N.J. & Crommelin, D.J.A. 1993b. Analysis and hydrolysis kinetics of phospholipids in aqueous liposome dispersions. Liposome Technology. 2nd ed. edited by Gregoriadis, G. Boca Raton: CRC Press. 1: 455-487.

Grit, M., Zuidam, N.J., Underberg, W.J.M. & Crommelin, D.J.A. 1993c. Hydrolysis of partially saturated egg phosphatidylcholine in aqueous liposome dispersions and effect of cholesterol incorporation on hydrolysis kinetics. Journal of Pharmacy and Pharmacology 45(6): 490-495.

Hur, M.K.M., Ainee, F.A., Faizal, M., Nursaidatul, S.K., Ng, W.L., Poh, R.J., Muhamad, S.Y., Mohd, H.M.I., Suria, R., Shahidan, R. & Irman, A.R. 2013. The effect of gamma irradiation on the chemical structure and surface characteristics of dipalmitoyl phosphatidylcholine (DPPC). Malaysian Journal of Analytical Sciences 17(3): 454-460.

Pamplona, R. 2008. Membrane phospholipids, lipoxidative damage and molecular integrity: A causal role in aging and longevity. Biochimica et Biophysica Acta (BBA)- Bioenergetics 1777(10): 1249-1262.

Schneider, C. 2009. An update on products and mechanisms of lipid peroxidation. Molecular Nutrition & Food Research 53(3): 315-321.

Stark, G. 1991. The effect of ionizing radiation on lipid membranes. Biochimica et Biophysica Acta 1071: 103-122.

Szczes, A. 2016. Effect of the enzymatically modified supported dipalmitoylphosphatidylcholine (DPPC) bilayers on calcium carbonate formation. Colloid and Polymer Science 294(2): 409-419.

Szoka, F. & Papahadjopoulos, D. 1978. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proceedings of the National Academy of Sciences 75(9): 4194-4198.

Tinsley, P.W. & Maerker, G. 1993. Effect of low-dose g-radiation on individual phospholipids in aqueous suspension. Journal of American Oil Chemists’ Society 70(2): 187-191.

Ulanski, P. & Rosiak, J.M. 1999. The use of radiation technique in the synthesis of polymeric nanogels. Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms 151(1): 356-360.

Van der Paal, J., Neyts, E.C., Verlackt, C.C.W. & Bogaerts, A. 2016. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chemical Science 7(1): 489-498.

Vernooij, E.A.A.M., Bosch, J.J.K. & Crommelin, D.J.A. 2002. Fourier transform infrared spectroscopic determination of the hydrolysis of poly (ethylene glycol)- phosphatidylethanolamine-containing liposomes. Langmuir 18(9): 3466-3470.

Zuidam, N.J., Versluis, C., Vernooy, E.A.A.M. & Crommelin, D.J.A. 1996. Gamma-irradiation of liposomes composed of saturated phospholipids. Effect of bilayer composition, size, concentration and absorbed dose on chemical degradation and physical destabilization of liposomes. Biochimica et Biophysica Acta (BBA)-Biomembranes 1280(1): 135-148.

 

 

*Corresponding author; email: irman@ukm.edu.my

 

 

 

previous