Sains Malaysiana 47(6)(2018): 1251–1257
http://dx.doi.org/10.17576/jsm-2018-4706-21
Kesan
Suhu Celupan ke atas Mikrostruktur dan Kekerasan Salutan Aluminium
pada Keluli Karbon
(Effect
of Dipping Temperature on Microstructure and Hardness of Coating Aluminium
on Carbon Steel)
EMEE MARINA SALLEH2, ZAIFOL SAMSU2, NORINSAN KAMIL OTHMAN1*
& AZMAN JALAR1
1School of Applied
Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Institute of
Microengineering and Nanoelectronic (IMEN), Universiti Kebangsaan
Malaysia
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 15 September 2017/Accepted: 17 January 2018
ABSTRAK
Keluli karbon amat mudah terkakis dalam pelbagai
persekitaran terutamanya dalam keadaan berudara lembap dan suhu tinggi. Oleh sebab itu, permukaan
keluli karbon perlu dilindungi dengan bahan atau logam yang mampu menangani
serangan kakisan yang agresif dengan membentuk lapisan oksida dan lapisan
antara logam yang bersifat pelindung. Kajian ini
dijalankan untuk menentukan mikrostruktur permukaan dan kekerasan salutan
aluminium (Al) tulen yang telah dihasilkan melalui teknik celupan panas. Celupan panas dalam leburan Al tulen dilakukan pada suhu
berbeza untuk mendapatkan lapisan salutan yang optimum. Keputusan teknik celupan panas menunjukkan dua lapisan utama
terhasil iaitu lapisan luar Al dan lapisan dalam aluminit (Fe-Al). Manakala lapisan dalam aluminida terdiri daripada dua lapisan yang
berbeza iaitu lapisan nipis luar FeAl3 dan lapisan tebal dalam Fe2Al5. Keputusan daripada ujian mikrokekerasan Vickers menunjukkan bahawa
nilai kekerasan lapisan aluminida meningkat dengan peningkatan suhu leburan Al
manakala lapisan Al tidak menunjukkan sebarang perubahan yang ketara.
Kata kunci: Aluminida; celupan panas; kekerasan; keluli karbon
ABSTRACT
Carbon steel can easily be corroded in various environments,
particularly in wet environment and at high temperature. Thus, the surface of
the carbon steel must be protected by a material or metal that can form oxide
surface and intermetallic layer that can preserve the carbon steel from
aggresive corrosion attack. This study was performed to determine
microstructure and hardness of aluminium (Al) coating that produced by hot
dipping technique. The hot dipping coating using pure Al was conducted at
different molten temperatures in order to attain an optimized coating layer.
Two layers were formed on the surface of Al hot dipped carbon steel, the outer
Al layer and the inner aluminide layer (Fe-Al). The inner aluminide layer
consisted of two distinct layers which were thin FeAl3 at
the outer layer and thicker Fe2Al5 on
the inner layer. Microhardness of the aluminide layer values increased with
increasing molten Al temperatures used and no apparent change of hardness of Al
layer was obtained.
Keywords: Aluminide; carbon steel; hardness; hot
dipping
REFERENCES
Bindumadhavan, P.N., Makesh, S., Gowrishankar,
N., Keng, W.H. & Prabhakar, O. 2000. Aluminizing and subsequent nitriding
of plain carbon low alloy steels for piston ring applications. Surface and
Coatings Technology 127: 251-258.
Bouayad, A., Gerometta, C.,
Belkebir, A. & Ambari, A. 2003. Kinetic interactions between solid iron and
molten aluminium. Materials Science and Engineering: A 363(1):
53-61.
Bouche, K., Barbier, F.
& Coulet, A. 1998. Intermetallic compound layer growth between solid iron and molten
aluminium. Materials Science and Engineering: A 249(1): 167-175.
Chang, Y.Y., Tsaur, C.C. & Rock, J.C. 2006.
Microstructure studies of an aluminide coating on 9cr-1mo steel during high
temperature oxidation. Surface and Coatings Technology 200(22):
6588-6593.
Cheng, W.J. & Wang, C.J. 2013. High-temperature oxidation behavior of hot-dipped aluminide mild
steel with various silicon contents. Applied Surface Science 274:
258-265.
Cheng, W.J. & Wang, C.J. 2011. Microstructural evolution of intermetallic layer in hot-dipped
aluminide mild steel with silicon addition. Surface and Coatings
Technology 205(19): 4726-4731.
Cheng, W.J. & Wang, C.J. 2009. Growth of
intermetallic layer in the aluminide mild steel during hot-dipping. Surface and Coatings Technology 204(6): 824-828.
Cotell, C.M., Sprague, J.A. & Smidt, F.A. 1999. Metal Handbook on Surface
Engineering. Material Park, OH: ASM International. 5: 346.
Deqing, W. 2008. Phase evolution of an aluminized steel by oxidation
treatment. Applied Surface Science 254(10): 3026-3032.
Hwang, S.H., Song, J.H. & Kim, Y.S. 2005. Effects of
carbon content of carbon steel on its dissolution into a molten aluminum alloy. Materials Science and Engineering: A 390(1): 437-443.
Eggeler, G., Vogel, H., Friedrich, J.
& Kaesche, H. 1985. Target preparation
for the transmission electron microscopic identification of the Al3Fe
in hot dip aluminized low alloyed steel. Praktische Metallographie 22(4):
163-170.
El-Mahallawy, M.A., Taha, M.A., Shady,
A.R., El-Sissi, A.N., Attia, W. Reif, 1997. Analysis of coating layer formed on steel strips during aluminising
by hot dipping in Al-Si baths. Materials Science and Technology
13(10): 832-840.
Frutos, E., Gonzalez-Carrasco, J.L., Capdevila,
C., Jimenez, J.A. & Houbaert, Y. 2009. Development of hard intermetallic coatings
on austenitic stainless steel by hot dipping in an Al–Si alloy.
Surface and Coatings Technology 203(19): 2916-2920.
Glasbrenner, H., Nold, E. & Voss, Z. 1997. The influence of alloying elements on the hot-dip aluminizing
process and on the subsequent high-temperature oxidation. Journal of
Nuclear Materials 249(1): 39-45.
Kattner, U.R. & Burton, B.P. 1999. Binary
Alloy Phase Diagrams. Material Park, OH: ASM International.
Kobayashi, S. & Yakou, T. 2002. Control of intermetallic compound layers
at interface between steel and aluminum by diffusion-treatment. Materials
Science and Engineering: A 338(1): 44-53.
Massalski, T.B. 1990. Binary Alloy
Phase Diagram. 2. Material Park,OH:
ASM International.
Mondolfo, L.F. 1976. Aluminum Alloy: Structure and
Properties. N.A.: Butterworth & Co Ltd.
Oni, B., Egiebor, N., Ekekwe, N. &
Chuku, A. 2008. Corrosion behavior
of tin-plated carbon steel and aluminum in nacl solutions using
electrochemical impedance spectroscopy. Journal of Minerals
and Materials Characterization and Engineering 7(4): 331.
Pradhan, D., Manna, M., Dutta, M.,
2014. Al–Mg–Mn Alloy Coating on
Steel with Superior Corrosion Behavior. Surface and Coatings Technology 258:
405-414.
Richards, R.W., Jones, R.D., Clements,
P.D. & Clarke, H. 1994. Metallurgy of continuous hot dip aluminizing. International
Materials Review 39(5): 191-212.
Samsu, Z., Othman, N.K., Daud, A.R.
& Daud, M. 2014. Properties and
growth rate of intermetallic Al-Fe through hot dipped aluminizing. Advanced
Materials Research 980: 3-7.
Sasaki, T. & Yakou, T. 2006. Features of intermetallic compounds in aluminized steels
formed using aluminum foil. Surface and Coatings Technology 201(6):
2131-2139.
Schmid, B., Aas, N., Grong, O. &
Odegard, R. 2002. High-temperature oxidation of iron and
the decay of wüstite studied with in situ esem. Oxidation of Metals 57(1-2):
115- 130.
Springer, H., Kostka, A., Payton, E.J.,
Raabe, D., Kaysser-Pyzalla, A. & Eggeler, G. 2011. On the formation and growth of intermetallic phases during
interdiffusion between low-carbon steel and aluminum alloys. Acta Materialia 59(4): 1586-1600.
Takata, N., Nishimoto, M., Kobayashi,
S. & Takeyama, M. 2014. Morphology and formation of Fe–Al intermetallic layers on iron hot-dipped
in Al–Mg–Si alloy melt. Intermetallics 54: 136-142.
Taniguchi, S., Hongawara, N. &
Shibata, T. 2001. Influence of water vapour on the
isothermal oxidation behaviour of tial at high temperatures. Materials
Science and Engineering: A 307(1): 107-112.
Wang, C.J., Lee, J.W. & Twu, T.H.
2003. Corrosion behaviors of low carbon
steel, SUS310 and Fe-Mn-Al alloy with hot-dipped aluminum coatings in
NaCl-induced hot corrosion. Surface and Coatings Technology 163: 37-43.
Wang, D. & Shi, Z. 2004. Aluminizing
and oxidation treatment of 1Cr18Ni9 stainless steel. Applied Surface Science 227(1): 255-260.
Yajiang, L., Juan, W., Yonglan, Z. & Holly, X. 2002.
Fine structures in Fe3Al alloy layer of a new hot dip
aluminized steel. Buletin Material Science 25(7): 635-639.
Yousaf, M., Iqbal, J. & Ajmal, M.
2011. Variables affecting
growth and morphology of the intermetallic layer (Fe2Al5). Materials Characterization 62(5): 517-525.
*Corresponding
author; email: insan@ukm.my
|