Sains Malaysiana 47(7)(2018): 1455–1464
http://dx.doi.org/10.17576/jsm-2018-4707-13
Integrated
Palm Oil Mill Effluent Treatment and CO2
Sequestration by Microalgae
(Rawatan
Bersepadu Efluen Kilang Kelapa Sawit dan Pemerangkapan CO2 oleh Mikroalga
NUR ANIRA
SYAFIQAH
HAZMAN1,
NAZLINA
HAIZA
MOHD
YASIN2*,
MOHD
SOBRI
TAKRIFF3,4, HASSIMI
ABU
HASAN1,
KAMRUL
FAKIR
KAMARUDIN1
& NOOR IRMA NAZASHIDA
MOHD
HAKIMI5
1Chemical Engineering Programme, Research Centre for Sustainable
Process Technology (CESPRO), Faculty of Engineering and Built Environment,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2School of Bioscience and Biotechnology, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3UKM-YSD Chair on Sustainable
Development, Faculty of Engineering and Built Environment, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
4IDEA Center, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
5Sime Darby Research Sdn Bhd, R&D Centre - Carey Island,
Lot 2664, Jalan Pulau Carey, 42960 Pulau Carey, Selangor Darul Ehsan,
Malaysia
Received: 14 September 2017/Accepted: 8
March 2018
ABSTRACT
Malaysian
economy relies on palm oil industries as a driver for rural development.
However, palm oil mill effluent (POME) that is generated from palm
oil processing stages causes major environmental challenges. Before
being released to the environment, POME treatment is crucial to
comply with standard discharge limit. Microalgae have demonstrated
excellent potential for phycoremediating POME and capturing CO2.
In this study, local microalgae isolate such as Chlamydomonas
sp. UKM 6 and Chlorella spp. UKM 8 were used for POME treatment
in 21 days with different inoculum sizes (5%, 10% and 15%). In addition,
an integrated treatment process was performed by taking the treated
POME
supernatant for cultivation of Chorella spp.
UKM
2, Chorella sorokiniana UKM 3 and Chlorella vulgaris for
CO2 sequestration study. Different
CO2 concentrations (5%, 10% and 15%)
were used and the experiments were carried out in 10 days under
continuous illumination. The results showed that among two species
involves in POME
treatment, Chlamydomonas sp. UKM 6
showed a great potential to remove pollutant such as COD (56%),
nitrogen (65%) and phosphorus (34%). The biomass after POME treatment
and CO2 biofixation content high lipid
(90 mg lipid/g biomass) which can be
the potential source for biodiesel production. In CO2
sequestration study, C. sorokininana UKM 3 able to takes up to 15% CO2
with CO2 uptake rate of 273 mgL-1d-1.
In this study, the integrated system of POME treatment and CO2
sequestration were feasible using microalgae.
Keywords: Chorella spp.;
Chlamydomonas sp.; CO2 capture;
effluent treatment; microalgae
ABSTRAK
Ekonomi
Malaysia bergantung kepada industri kelapa sawit untuk pembangunan
kawasan luar bandar. Walau bagaimanapun, efluen kilang kelapa sawit
(POME) yang terhasil pada peringkat pemprosesan minyak kelapa sawit
menyebabkan masalah besar kepada alam sekitar. Sebelum dilepaskan
ke alam sekitar, rawatan POME sangat penting untuk mematuhi had
pelepasan piawai yang telah ditetapkan. Mikroalga telah menunjukkan
potensi yang amat baik bagi tujuan bioremediasi POME dan pemerangkapan
CO2. Dalam kajian ini, pencilan mikroalga tempatan iaitu Chlamydomonas
sp. UKM 6 and Chlorella spp. UKM 8 telah digunakan untuk
merawat POME dalam jangka masa 21 hari menggunakan saiz enap cemar
yang berbeza (5%, 10% dan 15%). Di samping itu, proses rawatan bersepadu
dijalankan dengan mengambil supernatan POME yang
telah dirawat untuk inokulasi Chorella spp. UKM 2,
Chorella sorokiniana UKM 3 dan Chorella vulgaris bagi
kajian pemerangkapan CO2. Kepekatan
CO2 yang berlainan (5%, 10% dan 15%)
telah digunakan dan uji kaji telah dijalankan selama 10 hari di
bawah pencahayaan yang berterusan. Keputusan kajian menunjukkan
bahawa, antara dua spesies yang digunakan untuk rawatan POME, Chlamydomonas
sp. UKM
6 menunjukkan potensi yang besar untuk menurunkan
kadar COD (56%), nitrogen (65%) dan fosforus
(34%). Biojisim selepas rawatan POME dan
pemerangkapan CO2 menunjukkan
nilai lipid yang tinggi (90 mg lipid/g biomas) yang berpotensi menjadi
sumber penghasilan biodiesel. Dalam kajian pemerangkapan
karbon, C. sorokiniana UKM 3 boleh memerangkap sehingga 15% CO2
dengan kadar pemerangkapan
CO2
sebanyak 273 mgL-1d-1. Justeru,
proses integrasi antara rawatan POME dan pemerangkapan karbon
boleh dijalankan menggunakan mikroalga.
Kata
kunci: Chorella
spp.; Chlamydomonas
sp.;
mikroalga; pemerangkapan CO2;
rawatan efluen
REFERENCES
Ahmad, A.
& Krimly, M.Z. 2014. Palm oil mill effluent treatment process evaluation
and fate of priority components in an open and closed digestion system. Current
World Environment 9: 2.
Amin, I. 2014.
Malaysian Palm Oil Industry. Malaysian Palm Oil Council (MPOC). http://www.mpoc.org.my/Malaysian_
Palm_Oil_Industry.aspx. Accessed on 31 January 2018.
Babu, A., Katam, K., Gundupalli, M.P. & Bhattacharyya, D. 2017. Nutrient removal from wastewater using microalgae: A kinetic evaluation
and lipid analysis. Water Environment Research 90(6): 520-529.
Bligh, E.G. & Dyer, W.J. 1959. A rapid method for total lipid extraction and purification.
Canadian Journal of Biochemistry and Physiology 37: 911-917.
Cardoso, L.A.C., Karp, S.G., Vendruscolo, F., Kanno, K.Y.F., Zoz,
L.I.C. & Carvalho, J.C. 2017. Biotechnological
production of carotenoids and their applications in food and pharmaceutical
products. Carotenoids. InTech Open.
Demirbaş, A. 2008. Production of
biodiesel from algae iils. Energy Sources, Part A: Recovery,
Utilization, and Environmental Effects 31(2): 163-168.
Department of Environment. 1977. Environmental
Quality (Prescribed Premises) (Crude Palm Oil) Regulations. Department of Environment. Second Schedule
(Regulation 12(2) and (3)) Parameter Limits for Watercourse Discharge.
Ding, G.T.,
Yaakob, Z., Takriff, M.S., Salihon, J. & Abd Rahaman, M.S. 2016. Biomass
production and nutrients removal by a newly-isolated microalgal strain Chlamydomonas sp. in palm oil mill effluent (POME). International Journal of Hydrogen
Energy 41(8): 4888-4895.
Ebrahimian, A., Kariminia, H.R. & Vosoughi, M. 2014. Lipid production in mixotrophic cultivation of Chlorella
vulgaris in a mixture of primary and secondary municipal wastewater. Renewable Energy 71: 502-508.
El-Kassas, H.Y. & Mohamed, L.A. 2014. Bioremediation of the textile waste effluent by Chlorella
vulgaris. The Egyptian Journal of Aquatic Research 40(3):
301-308.
Environmental Quality (Clean Air) Regulations. 1978 PU(A) 280/1978.
Holdmann, C., Schmid-Staiger, U., Hornstein, H. & Hirth, T. 2018. Keeping the light energy constant - Cultivation of Chlorella
sorokiniana at different specific light availabilities and different
photoperiods. Algal Research 29: 61-70.
Kamarudin, K.F.,
Yaakob, Z., Rajkumar, R., Takriff, M.S. & Tasirin, S.M. 2013. Bioremediation of palm
oil mill effluents (POME) using Scenedesmus dimorphus and Chlorella
vulgaris. Advanced Science Letters 19(10): 2914-2918.
Khalid, A.A.H., Yaakob,
Z., Abdullah, S.R.S. & Takriff, M.S. 2018. Growth improvement and metabolic
profiling of native and commercial Chlorella sorokiniana strains
acclimatized in recycled agricultural wastewater. Bioresource Technology 247:
930-939.
Lam, M.K. & Lee, K.T. 2013. Effect of carbon source towards the growth of Chlorella vulgaris for CO2 bio-mitigation and biodiesel production. International
Journal of Greenhouse Gas Control 14: 169-176.
Mohd Yasin, N.H.,
Maeda, T., Hu, A., Yu, C.P. & Wood, T.K. 2015. CO2 sequestration by
methanogens in activated sludge for methane production. Applied Energy 142:
426-434.
Nayak, M., Suh, W.I.,
Lee, B. & Chang, Y.K. 2017. Enhanced carbon utilization efficiency and FAME production of Chlorella sp.
HS2 through combined supplementation of bicarbonate and carbon dioxide. Energy
Conversion and Management 154: 45-52.
Nur, M.M.A., Setyoningrum, T.M. &
Budiaman, I.G.S. 2018. Potency of Botryococcus braunii cultivated
on palm oil mill effluent (POME) wastewater as the source of biofuel. Environmental
Engineering Research 22(4): 1-8.
Rao, C.S., Sathish, T.,
Brahamaiah, P., Kumar, T.P. & Prakasham, R.S. 2009. Development of a
mathematical model for Bacillus circulans growth and alkaline protease
production kinetics. Journal of Chemical Technology and Biotechnology 84(2): 302-307.
Sforza, E., Gris, B.,
Silva, C.E.D.F., Morosinotto, T. & Bertucco, A. 2014. Effects of light on
cultivation of Scenedesmus obliquus in batch and continuous flat plate
photobioreactor. Chemical Engineering Transactions 38: 211-216.
Singh, P., Singh, R.K.
& Kumar, D. 2018. Microalgae: Potential agents for carbon dioxide mitigation. In Microbes for
Climate Resilient Agriculture, edited by Kashyap, P.L., Srivastava, A.K.,
Tiwari, S.P. & Kumar, S. New York: John Wiley
& Sons. p. 64.
Singh, R.P., Ibrahim, M.H., Esa, N. &
Iliyana, M.S. 2010. Composting of waste from palm oil mill: A sustainable waste
management practice. Reviews in Environmental Science and Bio/Technology 9(4):
331-344.
Suali, E. & Sarbatly, R. 2012. Conversion of microalgae to biofuel. Renewable and
Sustainable Energy Reviews 16(6): 4316-4342.
Tang, D., Han, W., Li, P., Miao, X. &
Zhong, J. 2011. CO2 biofixation and fatty acid composition of Scenedesmus
obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology 102(3): 3071-3076.
Watada, A.E., Norris, K.H., Worthington,
J.T. & Massie, D.R. 1976. Estimation of chlorophyll and
carotenoid contents of whole tomato by light absorbance technique. Journal
of Food Science 41(2): 329-332.
Wu, T.Y., Mohammad, A.W., Jahim, J.M.
& Anuar, N. 2010. Pollution control technologies for the treatment of palm
oil mill effluent (POME) through end-of-pipe processes. Journal of
Environmental Management 91(7): 1467-1490.
Zainal, A., Yaakob, Z.,
Takriff, M.S., Renganathan, R. & Ghani, J.A. 2012. Phycoremediation in
anaerobically digested palm oil mill effluent using Cyanobacterium, Spirulina
platensis. Journal of Biobased Materials and Bioenergy 6:
704-709.
Zheng, H., Gao, Z.,
Yin, F., Ji, X. & Huang, H. 2012. Effect of CO2 supply conditions on lipid
production of Chlorella vulgaris from enzymatic hydrolysates of
lipid-extracted microalgal biomass residues. Bioresource Technology 126:
24-30.
*Corresponding author; email: nazlinayasin@ukm.edu.my
|