Sains Malaysiana 48(11)(2019): 2463–2472
http://dx.doi.org/10.17576/jsm-2019-4811-16
Assessment of Heavy Metal Attenuation
and Mobility in Compacted Soil Columns
(Penilaian Pembantutan dan Kemobilan Logam Berat dalam Turus
Tanah Terpadat)
WAN ZUHAIRI,
W.Y.*
& NURITA, R.
Center for Earth Sciences and Environment,
Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received: 18 April 2019/Accepted:
15 August 2019
ABSTRACT
Groundwater pollution from unlined
landfill is a worrying problem nowadays. In order to reduce the
pollution, a good soil liner is very important. Natural compacted
soil is used to prevent leachate from reaching the groundwater.
The soil column study was performed to investigate the retention
capability of three soil types in Malaysia, namely marine clay (SBMC), weathered metasediments (HMS) and river alluvium soil (ARA).
All soil columns were tested against four types of heavy metals,
i.e. lead (Pb), copper (Cu), nickel (Ni) and zinc (Zn). The breakthrough
curves show that the SBMC has better retention capability
on heavy metals compared to other soils; indicating less migration
of heavy metals through SBMC soil column. The affinity of heavy
metals for adsorption were also varied with soil types and can be
ranked as follow: SBMC (Pb>Cu>Ni ≈
Zn) and HMS/ARA: Zn ≈ Cu>Pb>N.
Soil SBMC showed very high resistance to acidic test solution
(i.e. high buffering capacity), where the pH values throughout the
test were in an alkaline region with the values of pH 8 to 7. The
study also discovered that heavy metals entered the soil columns
were retained predominantly at the top 30 mm. Engineering applications
of these findings show that soil SBMC has
a very good potential to function as soil liner material compared
to two other soils (ARA and HMS).
Keywords: Breakthrough curves;
column experiment; heavy metals; retention profile; soil liner
ABSTRAK
Pencemaran air
bawah tanah dari
tapak pelupusan
sisa tidak berlapik
adalah suatu
masalah yang membimbangkan pada masa kini. Untuk mengurangkan pencemaran, pelapik tanah yang baik sangat penting. Tanah semula jadi yang dipadatkan digunakan untuk mencegah cecair larut resapan
daripada mencemari
air bawah tanah. Kajian
turus tanah
dilakukan untuk mengkaji keupayaan penahanan tiga jenis tanah di Malaysia, iaitu lempung marin
(SBMC),
tanah metasedimen
(HMS)
dan tanah aluvium sungai (ARA).
Kesemua tanah
diuji terhadap empat jenis logam
berat, iaitu
plumbum (Pb), kuprum
(Cu), nikel (Ni) dan
zink (Zn). Graf lengkung penembusan menunjukkan bahawa tanah SBMC mempunyai keupayaan penahanan logam berat yang lebih baik berbanding dengan tanah lain. Ini menunjukkan logam berat kurang
mengalami migrasi
melalui ruang tanah
SBMC.
Pemilihan logam
berat untuk penjerapan
juga berbeza-beza
dengan jenis tanah
dan boleh disenaraikan seperti berikut: SBMC (Pb>Cu>Ni
≈ Zn) dan HMS/ARA:
Zn ≈ Cu>Pb>Ni. Tanah
SBMC
menunjukkan rintangan
yang sangat tinggi
terhadap larutan berasid (iaitu kapasiti penampan tinggi), dengan nilai pH sepanjang ujian berada dalam
keadaan alkali antara
pH 8 hingga 7. Kajian ini juga mendapati
bahawa logam
berat yang memasuki liang tanah mengalami
penahanan terutamanya
pada bahagian 30 mm teratas. Aplikasi kejuruteraan penemuan ini menunjukkan bahawa tanah SBMC mempunyai potensi yang sangat baik untuk
berfungsi sebagai
bahan pelapik tanah
dibandingkan dengan
dua tanah lain (ARA dan HMS).
Kata kunci: Lengkung
penembusan; logam
berat; pelapik tanah; profil penahanan;
ujian turus
REFERENCES
Abollino, O., Aceto, M., Malandrino, M., Sarzanini, C. & Mentasti, E.
2003. Adsorption of heavy metals on Na-montmorillonite. Effect of
pH and organic substances. Water Research 37: 1619-1627.
Antoniadis,
V., McKinley, J.D. & Wan Zuhairi,
W.Y. 2007. Single-element and competitive metal mobility measured
with column infiltration and batch test. Journal of Environmental
Quality 32: 865-875.
Bittel, J.R. & Miller,
R.J. 1974. Lead, cadmium and calcium selectivity coefficients on
montmorillonite, illite and kaolinite.
Journal of Environmental Quality 3: 250-253.
Bohác, P., Delavernhe,
L., Zervas, E., Königer,
F., Schuhmann, R. & Emmerich,
K. 2019. Cation exchange capacity of bentonite in a saline environment.
Applied Geochemistry 100 (October 2018): 407-413. https://doi.org/10.1016/j.
apgeochem.2018.12.019.
Bright,
M.I., Thornton, S.F., Lerner, D.N. & Tellam,
J.H. 1996. Laboratory investigations into designed high attenuation
landfill liners. In Engineering Geology of Waste Disposal,
Vol. 11, edited by Bentley, S.P. London: Geological Society Engineering
Geology Special Publications. pp. 159-164.
British
Standard Institution, BS1377. 1990. Method of Test for Soils
for Civil Engineering Purposes.
Calace, N., Massimiani, A., Petronio, M. &
Pietroletti, M. 2001. Municipal landfill
leachate - soil interactions: A kinetic approach. Chemosphere
44(5): 1025-1031.
Chalermyanont, T., Arrykul, S. & Charoenthaisong,
N. 2009. Potential use of lateritic and marine clay soils as landfill
liners to retain heavy metals. Waste Management 29(1): 117-127.
Chotpantaratat, S., Ong, S.K.,
Sutthirat, C. & Osathaphana,
K. 2011. Competitive sorption and transport of Pb2+,
Ni2+, Mn2+,
and Zn2+ in lateritic soil columns. Journal
of Hazardous Materials 190: 391-396.
CIRIA.
1996. Barriers, Liners and Cover Systems for Containment and
Control of Land Contamination. Construction Industry Research and
Information Association, Special Publication 124. London: Thomas
Telford.
Davis,
J.A. 1984. Complexation of trace metals by adsorbed natural organic
matter. Geochimica et Cosmochimica
Acta 48: 679-691.
Department
of Environment (DOE). 1995. Landfill design, construction and operational
practice. Waste Management Paper 26B, HMSO.
Farrah,
H. & Pickering, W.F. 1977. Influence of clay-solute interactions
on aqueous heavy metal ion levels. Water, Air Soil Pollute
8: 189-197.
Farrah,
H. & Pickering, W.F. 1976. The sorption of zinc species by clay
minerals. Australian Journal Chemical 29: 1649-1656.
Frost,
R.R. & Griffin, R.A. 1977. Effect of pH on adsorption of cooper,
zinc and cadmium from landfill leachate by clay minerals. Journal
of Environmental Science and Health 12(4&5): 139-156.
Geotechnical
Research Centre Laboratory Manual. 1985. Laboratory Manual. Mc Gill
University, Montreal Canada (unpublished).
Griffin,
R.A. & Shimp, N.F. 1978. Attenuation
of Pollutants in Municipal Landfill Leachate by Clay Minerals.
Report: EPA-600/2-78-157. U.S Environmental Protection Agency.
Griffin,
R.A. & Shimp, N.F. 1976. Effect of
pH on the exchange-adsorption or precipitation of lead from landfill
leachates by clay minerals. Environmental Science and Technology
10: 1256- 1261.
Griffin,
R.A., Shimp, N.F., Steele, J.D., Ruch,
R.R., White, W.A. & Hughes, G.M. 1976. Attenuation of pollutants
in municipal landfill leachate by passage through clay. Environmental
Science and Technology 10: 1262-1268.
Gupta,
S.K. & Chen, K.Y. 1975. Partitioning of trace metals in selective
chemical fractions of near shore sediments. Environ. Lett.
10: 129-158.
Hesse,
P.R. 1972. A Textbook of Soil Chemical Analysis. New York:
Chemical Publishing Co. Inc.
Li,
L.Y. & Li, F. 2001. Heavy metal sorption and hydraulic conductivity
studies using three types of bentonite admixes. Journal of Environmental
Engineering 127(5): 20-429.
Li,
L., Lin, C. & Zhang, Z. 2017. Utilization of shale-clay mixtures
as a landfill liner material to retain heavy metals. Materials
& Design 114: 73-82.
Lo,
I.M. & Liljestrand, H.M. 1996. Laboratory
sorption and hydraulic conductivity tests: Evaluation of modified
clay materials. Waste Management & Research 14: 297-310.
https://doi.org/10.1177/0734242X9601400305.
Musso, T.B., Parolo,
M.E., Pettinari, G. & Francisca, F.M.
2014. Cu(II) and Zn(II) adsorptio capacity
of three different clay liner materials. Journal of Environmental
Management 146: 50-58.
Rendina, A. & de Iorio, A.F. 2012. Heavy metal partitioning in bottom sediments
of the Matanza-Riachuelo River and Main
Tributary streams. Soil & Sediment Contamination 21(1):
62-81. DOI: 10.1080/15320383.2012.636776.
Rubinos, D.A. & Spagnoli,
G. 2019. Assessment of red mud as sorptive
landfill liner for the retention of arsenic. Journal of Environmental
Management 232: 271-285.
Sahu, S., Nath,
B., Roy, S., Mandal, B. & Chatterjee, D. 2012. Bioavailability
of arsenic in the soil horizon: A laboratory column study. Environ.
Earth Sci. 65(3): 813-821.
Segalen, P. 1968. Note sur une methode de determination des
produits mineraux amorphes dans certains
sols a hydroxides tropicaux. Cah,
Orstom Ser. Pedol.
6: 105-126.
Scrudato, R.J. & Estes, E.L. 1975. Clay-lead
sorption studies. Environmental Geology 1: 167-170.
Tessier, A., Rapin,
F. & Carignan, R. 1985. Trace metals in oxic
lake sediments: Possible adsorption onto iron oxyhydroxides.
Geochimica et Cosmochimica
Acta 49: 183-194.
Tessier, A., Campbell, P.G.C. &
Bison, M. 1979. Sequential extraction procedure for the speciation
of particulate trace metals. Anal. Chem. 51: 844-850.
Wan Zuhairi,
W.Y. & Abdul Rahim Samsudin. 2007.
Sorption parameters of Pb and Cu on natural
clay soils from Selangor, Malaysia. Sains
Malaysiana 36(2): 149-157.
Wan Zuhairi,
W.Y. 2003a. Heavy metal sorption capabilities of some soil samples
from active landfill sites in Selangor. Geological Society of
Malaysia Bulletin 46: 295-297.
Wan Zuhairi,
W.Y. 2003b. Sorption capacity on lead, copper and zinc by clay soils
from South Wales, United Kingdom. Journal of Environmental Geology
45(2): 236-242.
Wan Zuhairi,
W.Y. 2001. Soils suitability for landfill liner material based on
their physico-chemical properties: A case study from South Wales,
United Kingdom. Majalah Geologi
Indonesia (MGI - Special Edition ISSN 0216-1061) 16: 115-122.
Wan Zuhairi,
W.Y. 2000. An investigation of natural attenuation characteristic
of natural clay soils from South Wales and their potential use as
engineered clay liner. PhD Thesis, Cardiff University (Unpublished).
Wan Zuhairi,
W.Y., Abdul Rahim, S., Mohd Ramziemran
& Chan, Y.L. 2004. Natural sorption capability of heavy metals:
Granitic residual soil from Broga and
marine clay from Sg. Besar Selangor. Geological Society of Malaysia Bulletin
48: 13-16.
William, J.D. 1997. Groundwater
Geochemistry: Fundamental and Application to Contamination.
Boca Raton: Lewis Publisher.
Yanful, E.K., Quigley, R.M. & Nesbitt,
H.W. 1988. Heavy metal migration at a landfill site, Sarnia, Ontario,
Canada-2: Metal partitioning and geotechnical implications. Applied
Geochemistry 3: 623-629.
Yang, Q.L., Zhang, J.L., Yang, Q.,
Yu, Y.X. & Yang, G. 2012. Behavior and mechanism of Cd(II) adsorption
on loess-modified clay liner. Desalin.
Water Treat 39(1-3): 10-20.
Yong, R.N. 2001. Contaminated Soils,
Pollutant Fate and Mitigation. New York: CRC Press.
Yong, R.N. & Phadungchewit, Y. 1993. pH influence on selectivity and retention
of heavy metals in some clay soil. Canadian Geotechnical Journal
30: 821-833.
Yong, R.N., Yaacob,
W.Z.W., Bentley, S.P., Harris, C. & Tan, B.K. 2001. Partitioning
of heavy metals on soil samples from column tests. Engineering
Geology 60: 307-322.
Yong, R.N., Galvez-Cloutier, R. & Phadungchewit,
Y. 1993. Selective sequential extraction analysis of heavy metal
retention in soil. Canadian Geotechnical Journal 30: 834-
847.
Yong, R.N., Mohamed, A.M.O. &
Warkentin, B.P. 1992. Principles of Contaminant Transport
in Soils. New York: Elsevier.
Zarime, N.A. & Wan Yaacob, W.Z. 2016. The movement of cadmium (Cd) through compacted
granitic residual soil using mini column infiltration technique.
Sains Malaysiana 45(12):
1905-1912.
*Corresponding author;
email: yaacobzw@ukm.edu.my
|