Sains Malaysiana 48(11)(2019): 2463–2472

http://dx.doi.org/10.17576/jsm-2019-4811-16

 

Assessment of Heavy Metal Attenuation and Mobility in Compacted Soil Columns

(Penilaian Pembantutan dan Kemobilan Logam Berat dalam Turus Tanah Terpadat)

 

WAN ZUHAIRI, W.Y.* & NURITA, R.

 

Center for Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 18 April 2019/Accepted: 15 August 2019

 

ABSTRACT

Groundwater pollution from unlined landfill is a worrying problem nowadays. In order to reduce the pollution, a good soil liner is very important. Natural compacted soil is used to prevent leachate from reaching the groundwater. The soil column study was performed to investigate the retention capability of three soil types in Malaysia, namely marine clay (SBMC), weathered metasediments (HMS) and river alluvium soil (ARA). All soil columns were tested against four types of heavy metals, i.e. lead (Pb), copper (Cu), nickel (Ni) and zinc (Zn). The breakthrough curves show that the SBMC has better retention capability on heavy metals compared to other soils; indicating less migration of heavy metals through SBMC soil column. The affinity of heavy metals for adsorption were also varied with soil types and can be ranked as follow: SBMC (Pb>Cu>Ni Zn) and HMS/ARA: Zn Cu>Pb>N. Soil SBMC showed very high resistance to acidic test solution (i.e. high buffering capacity), where the pH values throughout the test were in an alkaline region with the values of pH 8 to 7. The study also discovered that heavy metals entered the soil columns were retained predominantly at the top 30 mm. Engineering applications of these findings show that soil SBMC has a very good potential to function as soil liner material compared to two other soils (ARA and HMS).

 

Keywords: Breakthrough curves; column experiment; heavy metals; retention profile; soil liner

 

ABSTRAK

Pencemaran air bawah tanah dari tapak pelupusan sisa tidak berlapik adalah suatu masalah yang membimbangkan pada masa kini. Untuk mengurangkan pencemaran, pelapik tanah yang baik sangat penting. Tanah semula jadi yang dipadatkan digunakan untuk mencegah cecair larut resapan daripada mencemari air bawah tanah. Kajian turus tanah dilakukan untuk mengkaji keupayaan penahanan tiga jenis tanah di Malaysia, iaitu lempung marin (SBMC), tanah metasedimen (HMS) dan tanah aluvium sungai (ARA). Kesemua tanah diuji terhadap empat jenis logam berat, iaitu plumbum (Pb), kuprum (Cu), nikel (Ni) dan zink (Zn). Graf lengkung penembusan menunjukkan bahawa tanah SBMC mempunyai keupayaan penahanan logam berat yang lebih baik berbanding dengan tanah lain. Ini menunjukkan logam berat kurang mengalami migrasi melalui ruang tanah SBMC. Pemilihan logam berat untuk penjerapan juga berbeza-beza dengan jenis tanah dan boleh disenaraikan seperti berikut: SBMC (Pb>Cu>Ni Zn) dan HMS/ARA: Zn Cu>Pb>Ni. Tanah SBMC menunjukkan rintangan yang sangat tinggi terhadap larutan berasid (iaitu kapasiti penampan tinggi), dengan nilai pH sepanjang ujian berada dalam keadaan alkali antara pH 8 hingga 7. Kajian ini juga mendapati bahawa logam berat yang memasuki liang tanah mengalami penahanan terutamanya pada bahagian 30 mm teratas. Aplikasi kejuruteraan penemuan ini menunjukkan bahawa tanah SBMC mempunyai potensi yang sangat baik untuk berfungsi sebagai bahan pelapik tanah dibandingkan dengan dua tanah lain (ARA dan HMS).

 

Kata kunci: Lengkung penembusan; logam berat; pelapik tanah; profil penahanan; ujian turus

REFERENCES

Abollino, O., Aceto, M., Malandrino, M., Sarzanini, C. & Mentasti, E. 2003. Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Research 37: 1619-1627.

Antoniadis, V., McKinley, J.D. & Wan Zuhairi, W.Y. 2007. Single-element and competitive metal mobility measured with column infiltration and batch test. Journal of Environmental Quality 32: 865-875.

Bittel, J.R. & Miller, R.J. 1974. Lead, cadmium and calcium selectivity coefficients on montmorillonite, illite and kaolinite. Journal of Environmental Quality 3: 250-253.

Bohác, P., Delavernhe, L., Zervas, E., Königer, F., Schuhmann, R. & Emmerich, K. 2019. Cation exchange capacity of bentonite in a saline environment. Applied Geochemistry 100 (October 2018): 407-413. https://doi.org/10.1016/j. apgeochem.2018.12.019.

Bright, M.I., Thornton, S.F., Lerner, D.N. & Tellam, J.H. 1996. Laboratory investigations into designed high attenuation landfill liners. In Engineering Geology of Waste Disposal, Vol. 11, edited by Bentley, S.P. London: Geological Society Engineering Geology Special Publications. pp. 159-164.

British Standard Institution, BS1377. 1990. Method of Test for Soils for Civil Engineering Purposes.

Calace, N., Massimiani, A., Petronio, M. & Pietroletti, M. 2001. Municipal landfill leachate - soil interactions: A kinetic approach. Chemosphere 44(5): 1025-1031.

Chalermyanont, T., Arrykul, S. & Charoenthaisong, N. 2009. Potential use of lateritic and marine clay soils as landfill liners to retain heavy metals. Waste Management 29(1): 117-127.

Chotpantaratat, S., Ong, S.K., Sutthirat, C. & Osathaphana, K. 2011. Competitive sorption and transport of Pb2+, Ni2+, Mn2+, and Zn2+ in lateritic soil columns. Journal of Hazardous Materials 190: 391-396.

CIRIA. 1996. Barriers, Liners and Cover Systems for Containment and Control of Land Contamination. Construction Industry Research and Information Association, Special Publication 124. London: Thomas Telford.

Davis, J.A. 1984. Complexation of trace metals by adsorbed natural organic matter. Geochimica et Cosmochimica Acta 48: 679-691.

Department of Environment (DOE). 1995. Landfill design, construction and operational practice. Waste Management Paper 26B, HMSO.

Farrah, H. & Pickering, W.F. 1977. Influence of clay-solute interactions on aqueous heavy metal ion levels. Water, Air Soil Pollute 8: 189-197.

Farrah, H. & Pickering, W.F. 1976. The sorption of zinc species by clay minerals. Australian Journal Chemical 29: 1649-1656.

Frost, R.R. & Griffin, R.A. 1977. Effect of pH on adsorption of cooper, zinc and cadmium from landfill leachate by clay minerals. Journal of Environmental Science and Health 12(4&5): 139-156.

Geotechnical Research Centre Laboratory Manual. 1985. Laboratory Manual. Mc Gill University, Montreal Canada (unpublished).

Griffin, R.A. & Shimp, N.F. 1978. Attenuation of Pollutants in Municipal Landfill Leachate by Clay Minerals. Report: EPA-600/2-78-157. U.S Environmental Protection Agency.

Griffin, R.A. & Shimp, N.F. 1976. Effect of pH on the exchange-adsorption or precipitation of lead from landfill leachates by clay minerals. Environmental Science and Technology 10: 1256- 1261.

Griffin, R.A., Shimp, N.F., Steele, J.D., Ruch, R.R., White, W.A. & Hughes, G.M. 1976. Attenuation of pollutants in municipal landfill leachate by passage through clay. Environmental Science and Technology 10: 1262-1268.

Gupta, S.K. & Chen, K.Y. 1975. Partitioning of trace metals in selective chemical fractions of near shore sediments. Environ. Lett. 10: 129-158.

Hesse, P.R. 1972. A Textbook of Soil Chemical Analysis. New York: Chemical Publishing Co. Inc.

Li, L.Y. & Li, F. 2001. Heavy metal sorption and hydraulic conductivity studies using three types of bentonite admixes. Journal of Environmental Engineering 127(5): 20-429.

Li, L., Lin, C. & Zhang, Z. 2017. Utilization of shale-clay mixtures as a landfill liner material to retain heavy metals. Materials & Design 114: 73-82.

Lo, I.M. & Liljestrand, H.M. 1996. Laboratory sorption and hydraulic conductivity tests: Evaluation of modified clay materials. Waste Management & Research 14: 297-310. https://doi.org/10.1177/0734242X9601400305.

Musso, T.B., Parolo, M.E., Pettinari, G. & Francisca, F.M. 2014. Cu(II) and Zn(II) adsorptio capacity of three different clay liner materials. Journal of Environmental Management 146: 50-58.

Rendina, A. & de Iorio, A.F. 2012. Heavy metal partitioning in bottom sediments of the Matanza-Riachuelo River and Main Tributary streams. Soil & Sediment Contamination 21(1): 62-81. DOI: 10.1080/15320383.2012.636776.

Rubinos, D.A. & Spagnoli, G. 2019. Assessment of red mud as sorptive landfill liner for the retention of arsenic. Journal of Environmental Management 232: 271-285.

Sahu, S., Nath, B., Roy, S., Mandal, B. & Chatterjee, D. 2012. Bioavailability of arsenic in the soil horizon: A laboratory column study. Environ. Earth Sci. 65(3): 813-821.

Segalen, P. 1968. Note sur une methode de determination des produits mineraux amorphes dans certains sols a hydroxides tropicaux. Cah, Orstom Ser. Pedol. 6: 105-126.

Scrudato, R.J. & Estes, E.L. 1975. Clay-lead sorption studies. Environmental Geology 1: 167-170.

Tessier, A., Rapin, F. & Carignan, R. 1985. Trace metals in oxic lake sediments: Possible adsorption onto iron oxyhydroxides. Geochimica et Cosmochimica Acta 49: 183-194.

Tessier, A., Campbell, P.G.C. & Bison, M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51: 844-850.

Wan Zuhairi, W.Y. & Abdul Rahim Samsudin. 2007. Sorption parameters of Pb and Cu on natural clay soils from Selangor, Malaysia. Sains Malaysiana 36(2): 149-157.

Wan Zuhairi, W.Y. 2003a. Heavy metal sorption capabilities of some soil samples from active landfill sites in Selangor. Geological Society of Malaysia Bulletin 46: 295-297.

Wan Zuhairi, W.Y. 2003b. Sorption capacity on lead, copper and zinc by clay soils from South Wales, United Kingdom. Journal of Environmental Geology 45(2): 236-242.

Wan Zuhairi, W.Y. 2001. Soils suitability for landfill liner material based on their physico-chemical properties: A case study from South Wales, United Kingdom. Majalah Geologi Indonesia (MGI - Special Edition ISSN 0216-1061) 16: 115-122.

Wan Zuhairi, W.Y. 2000. An investigation of natural attenuation characteristic of natural clay soils from South Wales and their potential use as engineered clay liner. PhD Thesis, Cardiff University (Unpublished).

Wan Zuhairi, W.Y., Abdul Rahim, S., Mohd Ramziemran & Chan, Y.L. 2004. Natural sorption capability of heavy metals: Granitic residual soil from Broga and marine clay from Sg. Besar Selangor. Geological Society of Malaysia Bulletin 48: 13-16.

William, J.D. 1997. Groundwater Geochemistry: Fundamental and Application to Contamination. Boca Raton: Lewis Publisher.

Yanful, E.K., Quigley, R.M. & Nesbitt, H.W. 1988. Heavy metal migration at a landfill site, Sarnia, Ontario, Canada-2: Metal partitioning and geotechnical implications. Applied Geochemistry 3: 623-629.

Yang, Q.L., Zhang, J.L., Yang, Q., Yu, Y.X. & Yang, G. 2012. Behavior and mechanism of Cd(II) adsorption on loess-modified clay liner. Desalin. Water Treat 39(1-3): 10-20.

Yong, R.N. 2001. Contaminated Soils, Pollutant Fate and Mitigation. New York: CRC Press.

Yong, R.N. & Phadungchewit, Y. 1993. pH influence on selectivity and retention of heavy metals in some clay soil. Canadian Geotechnical Journal 30: 821-833.

Yong, R.N., Yaacob, W.Z.W., Bentley, S.P., Harris, C. & Tan, B.K. 2001. Partitioning of heavy metals on soil samples from column tests. Engineering Geology 60: 307-322.

Yong, R.N., Galvez-Cloutier, R. & Phadungchewit, Y. 1993. Selective sequential extraction analysis of heavy metal retention in soil. Canadian Geotechnical Journal 30: 834- 847.

Yong, R.N., Mohamed, A.M.O. & Warkentin, B.P. 1992. Principles of Contaminant Transport in Soils. New York: Elsevier.

Zarime, N.A. & Wan Yaacob, W.Z. 2016. The movement of cadmium (Cd) through compacted granitic residual soil using mini column infiltration technique. Sains Malaysiana 45(12): 1905-1912.

 

*Corresponding author; email: yaacobzw@ukm.edu.my

 

 

 

 

 

previous