Sains Malaysiana 48(11)(2019): 2565–2574

http://dx.doi.org/10.17576/jsm-2019-4811-26

 

Prediction of Soil Erosion in Pansoon Sub-basin, Malaysia using RUSLE integrated in Geographical Information System

(Ramalan Hakisan Tanah di Sub-lembangan Pansoon menggunakan Integrasi RUSLE dan Sistem Maklumat Geografi)

 

NOOR FADZILAH YUSOF, TUKIMAT LIHAN*, WAN MOHD RAZI IDRIS, ZULFAHMI ALI RAHMAN, MUZZNEENA AHMAD MUSTAPHA & MOHD. ABDUL WAHAB YUSOF

 

Center for Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 10 April 2019/Accepted: 15 August 2019

 

ABSTRACT

Water-borne erosion problem is one of the environmental problems faced globally particularly in developing countries. The objective of this study was to estimate the erosion rate at the Pansoon sub-basin using combination of conventional approach and remote sensing technology. Pansoon sub-basin is the upper stream of Langat watershed, Malaysia located in the mountainous area dominated by steep slopes and various type of soils which are the important factors contributed to soil erosion. The Revised Universal Soil Loss Equation (RUSLE) integrated in a Geographical Information System used to predict the soil erosion rate and spatially maps its distribution using rainfall, soil series and topography data to generate rainfall erosivity factor, soil erodibility factor and topography factor. Land use map was used to produce coverage and management practice factor. The result shows that 66% (7433 ha) of the Pansoon sub-basin is classified at very low risk, 22% of low risk (2433 ha), 5% of moderate (582 ha), 2% of the area with high risk (251 ha) and 5% of very high risk of erosion (549 ha). Pansoon sub-basin is prone to soil erosion problem on the southwest region may due to soil erodibility factor, slope length and slope steepness. Accuracy assessment was obtained between prediction model and field observation data (p=0.97) which means the RUSLE approach integrated in GIS is suitable to be used to predict and assessing the soil erosion rate. In conclusion, the prediction of soil erosion using RUSLE in GIS can be accurately assessed with the combination of field observation data.

 

Keywords: GIS; Langat; Pansoon; RUSLE; soil erosion

 

ABSTRAK

Masalah hakisan yang disebabkan oleh air merupakan salah satu masalah alam sekitar yang dihadapi di seluruh dunia terutamanya di negara membangun. Objektif kajian ini adalah untuk menganggarkan kadar hakisan di sub-lembangan Pansoon menggunakan gabungan pendekatan konvensional dan teknologi penderiaan jauh. Sub-lembangan Pansoon adalah kawasan hulu lembangan Langat, Malaysia yang terletak di kawasan pergunungan yang dikelilingi oleh cerun curam dan beberapa jenis tanih yang merupakan faktor penting yang menyumbang kepada hakisan tanah. Semakan Semula Persamaan Kehilangan Tanih Universal (RUSLE) yang diintegrasikan dalam Sistem Maklumat Geografi digunakan untuk meramal kadar hakisan tanah dan peta ruangan dengan menggunakan data hujan, siri tanih dan topografi bagi menghasilkan faktor erosiviti hujan, faktor kebolehhakisan tanah dan faktor topografi. Peta guna tanah digunakan bagi menghasilkan faktor liputan dan amalan pengurusan. Hasil kajian mendapati 66% (7433 ha) daripada sub-lembangan Pansoon dikelaskan sebagai berisiko sangat rendah, 22% daripadanya adalah berisiko rendah (2433 ha), 5% daripadanya adalah sederhana (582 ha), 2% (251 ha) dan 5% daripadanya adalah hakisan yang sangat tinggi (549 ha). Sub-lembangan Pansoon terdedah kepada masalah hakisan tanah di wilayah barat daya mungkin disebabkan oleh faktor kebolehhakisan tanah, panjang cerun dan kecerunan. Kajian ketepatan diperoleh antara model ramalan dan data kerja lapangan (p=0.97) yang bermaksud pendekatan integrasi RUSLE dan GIS sesuai digunakan untuk meramal dan mentaksir kadar hakisan tanah. Kesimpulannya, ramalan hakisan tanah menggunakan RUSLE dalam GIS dapat dinilai secara tepat dengan gabungan data pemerhatian lapangan.

Kata kunci: GIS; hakisan tanih; Langat; Pansoon; RUSLE

REFERENCES

Abdulkareem, J.H., Biswajeet, P., Wan Nor Azmin, S. & Nor Rohaizah, J. 2017. Prediction of spatial soil loss impacted by long-term land-use/land-cover change in a tropical watershed. Geoscience Frontiers 10(2): 389-403.

Alfarooq, O.B., Marlia, M.H. & Mahmood, J.A. 2017. A study on water quality from Langat river, Selangor. Acta Scientifica Malaysia (ASM) 1(2): 1-4.

Anees, M.T., Abdullah, K., Nawawi, M.N.M., Norulaini, N.A.N., Syakir, M.I. & Omar, A.K.M. 2018. Soil erosion analysis by RUSLE and sediment yield models using remote sensing and GIS in Kelantan state, Peninsular Malaysia. Soil Research 56(4): 356-372.

Asmamaw, L.B. & Mohammed, A.A. 2019. Identification of soil erosion hotspot areas for sustainable land management in the Gerado catchment, North-eastern Ethiopia. Remote Sensing Applications: Society and Environment 13: 306-317.

Borrelli, P., Robinson, D.A., Fleischer, L.R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Oost, K.V., Montanarella, L. & Panagos, P. 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications 8(1): 2013.

DID, D.o.I.a.D. 2010. Guideline for Erosion and Sediment Control in Malaysia. Kuala Lumpur.

Fawaz, A.B., Mohammad, S.O. & Muhammad Barzani, G. 2013. Water quality assessment of the Semenyih River, Selangor, Malaysia. Journal of Chemistry 2013: Article ID 871056.

Fayas, C.M., Abeysingha, N.S., Nirmanee, K.G.S., Samaratunga, D. & Mallawatantri, A. 2019. Soil loss estimation using RUSLE model to prioritize erosion control in KELANI river basin in Sri Lanka. International Soil and Water Conservation Research 7(2): 130-137.

Feng, X., Wang, Y., Chen, L., Fu, B. & Bai, G. 2010. Modeling soil erosion and its response to land-use change in hilly catchments of the Chinese Loess Plateau. Geomorphology 118(3): 239-248.

Ghani, A.H.A., Tukimat, L., Sahibin, A.R., Musthapha, M.A., Wan Mohd Razi, I. & Zulfahmi, A.R. 2013. Prediction of sedimentation using integration of RS, RUSLE Model and GIS in Cameron Highlands, Pahang, Malaysia. AIP Conference Proceedings. pp. 543-548.

Hafizan, J., Sharifuddin, M.Z., Mohd Kamil, Y., Tengku Hanidza, T.I., Mohd Armi, A.S., Mohd Ekhwan, T. & Mazlin, M. 2011. Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. Environmental Monitoring and Assessment 173: 625-641.

Jazouli, A.E., Barakat, A., Khellouk, R., Rais, J. & Baghdadi, M.E. 2019. Remote sensing and GIS techniques for prediction of land use land cover change effects on soil erosion in the high basin of the Oum Er Rbia River (Morocco). Remote Sensing Applications: Society and Environment 13: 361-374.

Kamaludin, H., Lihan, T., Ali Rahman, Z., Mustapha, M.A., Idris, W.M.R. & Rahim, S.A. 2013. Integration of remote sensing, RUSLE and GIS to model potential soil loss and sediment yield (SY). Hydrology and Earth System Sciences Discussion 2013(10): 4567-4596.

Khosrokhani, M. & Pradhan, B. 2014. Spatio-temporal assessment of soil erosion at Kuala Lumpur metropolitan city using remote sensing data and GIS. Geomatics, Natural Hazards and Risk 5(3): 252-270.

Lihan, T., Fatin Khodri, N., Ahmad Mustapha, M., Ali Rahman, Z. & Mohd Razi Idris, W. 2018. Potensi hakisan tanih di Lembangan Sungai Bilut, Raub, Pahang menggunakan integrasi RUSLE dan GIS. Sains Malaysiana 47(10): 2241- 2249.

Marina, Z.A., Ahmad Abas, K., Tukimat, L. & Nurul Akhma, Z. 2018. Hydrological change effects on Sungai Langat water quality. Sains Malaysiana 47(7): 1401-1411.

Mokhtar, J. & Hafizi, M.S. 2016. Soil erosion and sediment problems in the Alur Ilmu, UKM. Malaysian Journal of Society and Space 12(13): 145-156.

Mondal, A., Khare, D., Kundu, S., Mondal, S., Mukherjee, S. & Mukhopadhyay, A. 2017. Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data. The Egyptian Journal of Remote Sensing and Space Science 20(1): 61-70.

Morgan, R.P.C. 2005. Soil Erosion and Conservation. New York: Wiley.

Obaid, H.A. & Shahid, S. 2017. Soil erosion susceptibility of Johor River basin. Water and Environment Journal 31(3): 367-374.

Phinzi, K. & Ngetar, N.S. 2018. The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: A review. International Soil and Water Conservation Research 7(1): 27-46.

Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K. & Yoder, D.C. 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). US Department of Agriculture, Agriculture Handbook Number 703. Washington, DC: Government Printing Office. pp. 47-51.

Rizeei, H.M., Saharkhiz, M.A., Biswajeet, P. & Noordin, A. 2016. Soil erosion prediction based on land cover dynamics at the Semenyih watershed in Malaysia using LTM and USLE models. Geocarto International 31(10): 1158-1177.

Roose, E.J. 1977. Application of the Universal Soil Loss Equation of Wischmeier and Smith in the West Africa. London: Wiley.

Roslan, Z.A., Mohd Sofiyan, S. & Yusoff, N. 2017. Erosion risk assessment: A case study of the Langat river bank in Malaysia. International Soil and Water Conservation Research 5(1): 26-35.

Sujaul, I.M., Gasim, M.B., Ismail, S., Sahibin, A.R. & Mohd Ekhwan, T. 2012. Estimation of the rate of soil erosion in the Tasik Chini catchment, Malaysia using the RUSLE model integrated with the GIS. Australian Journal of Basic and Applied Sciences 6(12): 286-296.

Sujaul, I.M., Ismail, S., Gasim, M.B., Sahibin, A.R. & Mohd Ekhwan, T. 2010. Assessment of land use and land cover changes in the Tasik Chini catchment area, Pahang, Malaysia using the GIS. Advances in Environmental Biology 4(3): 404-413.

Wischmeier, W.H. & Smith, D.D. 1958. Rainfall energy and its relationship to soil loss. Eos, Transactions American Geophysical Union 39(2): 285-291.

Wischmeier, W.H. & Smith, D.D. 1978. Predicting Rainfall Erosion Losses: Guide to Conservation Planning. Vol. 537.

Woldemariam, G., Iguala, A., Tekalign, S. & Reddy, R. 2018. Spatial modeling of soil erosion risk and its implication for conservation planning: The case of the Gobele watershed, East Hararghe zone, Ethiopia. Land 7(1): 25.

Zaini, H., Tengku Nurliana, T.M.R., Ahmad, S. & Ab. Khalik, W. 2014. An assessment of natural radionuclides in water of Langat River estuary, Selangor. AIP Conference Proceedings 1584(1): 228-234.

Zare, M., Panagopoulos, T. & Loures, L. 2017. Simulating the impacts of future land use change on soil erosion in the Kasilian watershed, Iran. Land Use Policy 67: 558-572.

 

*Corresponding author; email: matt@ukm.edu.my

 

 

 

 

 

 

previous