Sains Malaysiana 48(11)(2019): 2595–2604

http://dx.doi.org/10.17576/jsm-2019-4811-29

 

Rock Slope Stability Analysis based on Terrestrial LiDAR on Karst Hills in Kinta Valley Geopark, Perak, Peninsular Malaysia

(Analisis Kestabilan Cerun Batuan berdasarkan LiDAR Daratan di Bukit Batu Kapur Geotaman Lembah Kinta, Perak, Semenanjung Malaysia)

 

MUHAMMAD AFIQ ARIFF HELLMY1, ROS FATIHAH MUHAMMAD1*, MUSTAFFA KAMAL SHUIB1, NG THAM FATT1, WAN HASIAH ABDULLAH1, AISHAH ABU BAKAR2 & RALPH KUGLER1

 

1Department of Geology, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 20 April 2019/Accepted: 15 August 2019

 

ABSTRACT

The use of modern mapping technology is necessary in assessing slopes and cliffs, especially in tropical countries as it is mostly inaccessible and covered with thick vegetation which restricts the conventional data collection to only at the base of the cliff. Overhanging and sub-vertical characteristics of tropical karst hills in Kinta Valley together with highly fractured and day-lighting joints increase the possibility of rock slope failure. The problem statement of this research is how Terrestrial Laser Scanning (TLS) can assist the traditional survey in slope characterization. The main objective of this research was to assess the stability of the limestone hills in Kinta Valley based on the output provided by terrestrial LiDAR and scanline survey method. TLS helps engineers and geologists to collect a high number of discontinuity data where it is inaccessible for manual compass data measurement. A total number of about 13 cliffs on 4 limestone hills were assessed. Gunung Lang and Kek Lok Tong show major potential failure trending towards east, Gunung Lanno towards southwest, Kwan Yin Tong towards west, and Gunung Cheroh with three directions of failure which are pointed towards the south, southwest and southeast direction. The overall results showed that the orientation of the major joint sets and the direction of the failure greatly influence the karst hills morphology in the Kinta Valley. The integration of LiDAR method with the manual compass clinometer has become a better approach to assess the stability of limestone hills and other rock slope in the possible future.

 

Keywords: Limestone hills; slope stability; terrestrial laser scanning

 

ABSTRAK

Penggunaan teknologi pemetaan moden ialah satu keperluan dalam menilai cerun dan tebing terutamanya di negara tropika kerana kebanyakan kawasannya tidak boleh diakses dan diliputi oleh tumbuhan yang tebal yang mengehadkan pengumpulan data secara konvensional yakni pada bahagian bawah cerun sahaja. Ciri gunung batu kapur tropika yang curam dan sub-menegak di Lembah Kinta bersama dengan retakan teruk dan satah yang mengarah keluar dari cerun meningkatkan kecenderungan kegagalan cerun batuan. Pernyataan masalah kajian ini adalah bagaimana LiDAR daratan boleh membantu tinjauan tradisi dalam pencirian cerun. Objektif utama penyelidikan ini adalah untuk menilai kestabilan gunung batu kapur di Lembah Kinta berdasarkan output yang disediakan oleh LiDAR daratan dan kaedah tinjauan garis imbasan. Imbasan laser terestrial laser (TLS) membantu jurutera dan ahli geologi mengumpul data ketakselanjaran dalam bilangan yang tinggi di kawasan yang tidak dapat diakses untuk pengukuran data secara manual oleh kompas klinometer. Sebanyak tiga belas cerun daripada empat gunung batu kapur telah dinilai. Gunung Lang dan Kek Lok Tong menunjukkan tren jatuhan ke arah timur, Gunung Lanno ke arah barat daya, Kwan Yin Tong ke arah barat dan Gunung Cheroh ke arah selatan, barat daya dan tenggara. Keputusan keseluruhan menunjukkan orientasi utama kekar dan arah jatuhan batuan mempengaruhi morfologi gunung karst di Lembah Kinta. Integrasi LiDAR dan kompas klinometer secara manual merupakan pendekatan yang baik untuk menilai kestabilan gunung batu kapur dan cerun batuan lain pada masa hadapan.

 

Kata kunci: Bukit batu kapur; imbasan laser terestrial; kestabilan cerun

 

REFERENCES

Agliardi, F. & Crosta, G.B. 2003. High resolution three-dimensional numerical modelling of rockfalls. International Journal of Rock Mechanics and Mining Sciences 40(4): 455-471. https://doi.org/https://doi.org/10.1016/S1365- 1609(03)00021-2.

Besl, P.J. & McKay, N.D. 1992. Method for registration of 3-D shapes. Sensor Fusion IV: Control Paradigms and Data Structures 1611: 586-606.

Cawood, A.J., Bond, C.E., Howell, J.A., Butler, R.W. & Totake, Y. 2017. LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models. Journal of Structural Geology 98: 67-82.

Chen, S., Goh, T.L., Han, L. & Tovele, G.S. 2019. Effects of tectonic stresses and structural planes on slope deformation and stability at the Buzhaoba open Pit Mine, China. Sains Malaysiana 48(2): 317-324.

Chen, Y. & Medioni, G. 1992. Object modelling by registration of multiple range images. Image and Vision Computing 10(3): 145-155.

Dunning, S.A., Massey, C.I. & Rosser, N.J. 2009. Structural and geomorphological features of landslides in the Bhutan Himalaya derived from terrestrial laser scanning. Geomorphology 103(1): 17-29.

Escher, B.G. 1931. The Goenoeng Sewoe and the problem of the Karst in the Tropics. Acts of the XXIII. Dutch Natural and Medical Congress. pp. 259-261.

Ferrero, A.M., Forlani, G., Roncella, R. & Voyat, H.I. 2009. Advanced geostructural survey methods applied to rock mass characterization. Rock Mechanics and Rock Engineering 42(4): 631-665.

Ghani, M.F.A., Tuan Rusli, M., Abdul Ghani, R. & Ailie, S.S. 2018. A systematic approach of rock slope stability assessment: A case study at Gunung Kandu, Gopeng, Perak, Malaysia. Sains Malaysiana 47(7): 1413-1421.

Ghani, M.F.A., Norbert, S., Goh, T.L., Tuan Rusli, M. & Abdul Ghani, R. 2016. Study of lineament density in potential evaluation of rock fall in Kinta Valley. Sains Malaysiana 45(12): 1887-1896.

Goh, T.L., Ainul Mardhiyah, M.R., Nur Amanina, M., Abdul Ghani, R., Nur Ailie, S.S. & Tuan Rusli, M. 2016. Rock slope stability assessment using slope mass rating (SMR) method: Gunung Lang Ipoh Malaysia. Scholar Journal of Engineering and Technology 4(4): 185-192.

Guzzetti, F., Cardinali, M., Reichenbach, P., Cipolla, F., Sebastiani, C., Galli, M. & Salvati, P. 2004. Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Engineering Geology 73(3-4): 229-245.

Hoek, E. & Bray, J. 1981. Rock Slope Engineering. 3rd ed. London: The Institution of Miningand Metallurgy.

Ingham, F.T. & Bradford, E.F. 1960. The Geology and Mineral Resources of the Kinta Valley, Perak. No. 9. Federation of Malaya: Geological Survey.

Lato, M.J. & Vöge, M. 2012. Automated mapping of rock discontinuities in 3D LiDAR and photogrammetry models. International Journal of Rock Mechanics and Mining Sciences 54: 150-158.

Marquinez, J., Duarte, R.M., Farias, P. & Sanchez, M.J. 2003. Predictive GIS-based model of rockfall activity in mountain cliffs. Natural Hazards 30(3): 341-360.

Muhammad, R.F. & Tjia, H.D. 2003. The morphostructures of Kinta Valley karst. Bulletin of the Geological Society of Malaysia 46: 319-328.

Norbert, S., Ghani, M.F.A., Azimah, H., Goh, T.L., Abdul Ghani, R., Noraini, S., Tuan Rusli, T.M. & Lee, K.E. 2015. Assessment of rockfall potential of limestone hills in the Kinta Valley. Journal of Sustainability Science and Management 10(2): 24-34.

Nur Amanina, M., Goh, T.L., Ainul Mardhiyah, M.R., Abdul Ghani, R., Ailie, S.S., Norbert, S., Noraini, S., Lee, K.E. & Tuan Rusli, M. 2018. The geomechanical strength of carbonate rock in Kinta valley, Ipoh, Perak Malaysia. AIP Conference Proceedings 1940: 020046-1 - 020046-8. doi: 10.1063/1.5027961.

Priest, S.D. 1993. The collection and analysis of discontinuity orientation data for engineering design, with examples. In Rock Testing and Site Characterization, edited by Hudson, J.A. Oxford: Pergamon Press. pp. 167-192.

Priest, S.D. & Hudson, J. 1981. Estimation of discontinuity spacing and trace length using scanline surveys. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 18(3): 183-197.

Romana, M. 1985. New adjustment ratings for application of Bieniawski classification to slopes. Proceedings of the International Symposium on Role of Rock Mechanics, Zacatecas, Mexico. pp. 49-53.

Rossi, G. 1986. Karst and structure in tropical areas: The Malagasi example. In New Direction in Karst: Proceedings of the Anglo-French Symposium, edited by Paterson, K. & Sweeting M.M. Norwich: Geo Books. 1983: 189-212.

Song, L.H. 1989. Geological structure: An important factor controlling karst development. In New Direction in Karst: Proceedings of the Anglo-French Symposium. Paterson, K. & Sweeting M.M. Norwich: Geo Books. 1983: 165-174.

Spreafico, M.C., Perotti, L., Cervi, F., Bacenetti, M., Bitelli, G., Girelli, V.A., Mandanici, E., Tini, M.A. & Borgatti, L. 2015. Terrestrial remote sensing techniques to complement conventional geomechanical surveys for the assessment of landslide hazard: The San Leo case study (Italy). European Journal of Remote Sensing 48(1): 639-660.

Sturzenegger, M. & Stead, D. 2009. Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology 106(3-4): 163-182.

Tan, B.K. 1988. Geologi Kejuruteraan Kawasan Sekitaran Ipoh, Perak. (Engineering geology of the Ipoh area, Perak). Laporan Akhir Projek Penyelidikan No.7/86, Sept. 1988, UKM. p. 74.

Tjia, Hong Djin. 1969. Slope development in tropical karst. Zeitschrift fuer Geomorphologie 13(3): 260-66.

Yiu, K. & King, B. 2009. Stereonet data from terrestrial laser scanner point clouds. Survey Review 41(314): 324-338. doi: 10.1179/003962609X45173.

 

*Corresponding author; email: rosfmuhammad@um.edu.my

 

 

 

 

 

previous