Sains Malaysiana 48(11)(2019): 2595–2604
http://dx.doi.org/10.17576/jsm-2019-4811-29
Rock Slope Stability Analysis based
on Terrestrial LiDAR on Karst Hills in Kinta Valley Geopark,
Perak, Peninsular Malaysia
(Analisis Kestabilan Cerun Batuan berdasarkan LiDAR Daratan di Bukit Batu Kapur Geotaman Lembah Kinta, Perak, Semenanjung
Malaysia)
MUHAMMAD AFIQ
ARIFF
HELLMY1,
ROS
FATIHAH
MUHAMMAD1*,
MUSTAFFA
KAMAL
SHUIB1,
NG
THAM
FATT1,
WAN
HASIAH
ABDULLAH1,
AISHAH
ABU
BAKAR2
& RALPH KUGLER1
1Department of Geology,
Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal
Territory, Malaysia
2Department of Civil
Engineering, Faculty of Engineering, University of Malaya, 50603
Kuala Lumpur, Federal Territory, Malaysia
Received: 20 April
2019/Accepted: 15 August 2019
ABSTRACT
The use
of modern mapping technology is necessary in assessing slopes and
cliffs, especially in tropical countries as it is mostly inaccessible
and covered with thick vegetation which restricts the conventional
data collection to only at the base of the cliff. Overhanging and
sub-vertical characteristics of tropical karst hills in Kinta Valley
together with highly fractured and day-lighting joints increase
the possibility of rock slope failure. The problem statement of
this research is how Terrestrial Laser Scanning (TLS)
can assist the traditional survey in slope characterization. The
main objective of this research was to assess the stability of the
limestone hills in Kinta Valley based on the output provided by
terrestrial LiDAR and scanline survey method. TLS helps engineers and geologists to collect a high number
of discontinuity data where it is inaccessible for manual compass
data measurement. A total number of about 13 cliffs on 4 limestone
hills were assessed. Gunung Lang and Kek
Lok Tong show major potential failure
trending towards east, Gunung Lanno
towards southwest, Kwan Yin Tong towards west, and Gunung
Cheroh with three directions of failure
which are pointed towards the south, southwest and southeast direction.
The overall results showed that the orientation of the major joint
sets and the direction of the failure greatly influence the karst
hills morphology in the Kinta Valley. The integration of LiDAR method
with the manual compass clinometer has become a better approach
to assess the stability of limestone hills and other rock slope
in the possible future.
Keywords:
Limestone hills; slope stability; terrestrial laser scanning
ABSTRAK
Penggunaan teknologi pemetaan moden ialah satu
keperluan dalam
menilai cerun dan
tebing terutamanya
di negara tropika kerana kebanyakan kawasannya tidak boleh diakses dan
diliputi oleh
tumbuhan yang tebal yang mengehadkan pengumpulan data secara konvensional yakni pada bahagian
bawah cerun
sahaja. Ciri gunung
batu kapur tropika yang curam dan sub-menegak di Lembah Kinta bersama dengan retakan teruk dan satah
yang mengarah keluar
dari cerun meningkatkan
kecenderungan kegagalan
cerun batuan. Pernyataan
masalah kajian
ini adalah bagaimana
LiDAR daratan boleh
membantu tinjauan tradisi dalam pencirian
cerun. Objektif
utama penyelidikan ini adalah untuk
menilai kestabilan
gunung batu kapur
di Lembah Kinta berdasarkan
output yang disediakan oleh
LiDAR daratan dan
kaedah tinjauan garis imbasan. Imbasan laser terestrial laser (TLS)
membantu jurutera
dan ahli geologi
mengumpul data ketakselanjaran
dalam bilangan
yang tinggi di kawasan yang tidak dapat diakses
untuk pengukuran
data secara manual oleh kompas klinometer. Sebanyak tiga belas
cerun daripada
empat gunung batu
kapur telah
dinilai. Gunung Lang dan Kek Lok
Tong menunjukkan tren
jatuhan ke arah
timur, Gunung
Lanno ke arah
barat daya,
Kwan Yin Tong ke arah barat
dan Gunung Cheroh ke arah
selatan, barat
daya dan tenggara.
Keputusan keseluruhan
menunjukkan orientasi utama kekar dan
arah jatuhan
batuan mempengaruhi morfologi gunung karst di Lembah Kinta. Integrasi LiDAR dan kompas klinometer
secara manual merupakan
pendekatan yang baik untuk menilai kestabilan
gunung batu
kapur dan cerun
batuan lain pada
masa hadapan.
Kata kunci: Bukit batu
kapur; imbasan
laser terestrial; kestabilan cerun
REFERENCES
Agliardi, F. & Crosta, G.B. 2003. High resolution three-dimensional numerical
modelling of rockfalls. International
Journal of Rock Mechanics and Mining Sciences 40(4): 455-471.
https://doi.org/https://doi.org/10.1016/S1365- 1609(03)00021-2.
Besl, P.J. & McKay, N.D. 1992. Method
for registration of 3-D shapes. Sensor Fusion IV: Control Paradigms
and Data Structures 1611: 586-606.
Cawood, A.J., Bond, C.E.,
Howell, J.A., Butler, R.W. & Totake,
Y. 2017. LiDAR, UAV or compass-clinometer? Accuracy, coverage and
the effects on structural models. Journal of Structural Geology
98: 67-82.
Chen,
S., Goh, T.L., Han, L. & Tovele, G.S.
2019. Effects of tectonic stresses and structural planes on slope
deformation and stability at the Buzhaoba
open Pit Mine, China. Sains Malaysiana 48(2):
317-324.
Chen,
Y. & Medioni, G. 1992. Object modelling
by registration of multiple range images. Image and Vision Computing
10(3): 145-155.
Dunning,
S.A., Massey, C.I. & Rosser, N.J. 2009. Structural and geomorphological
features of landslides in the Bhutan Himalaya derived from terrestrial
laser scanning. Geomorphology 103(1): 17-29.
Escher,
B.G. 1931. The Goenoeng Sewoe
and the problem of the Karst in the Tropics. Acts of the XXIII.
Dutch Natural and Medical Congress. pp. 259-261.
Ferrero,
A.M., Forlani, G., Roncella,
R. & Voyat, H.I. 2009. Advanced geostructural survey methods applied to rock mass characterization.
Rock Mechanics and Rock Engineering 42(4): 631-665.
Ghani,
M.F.A., Tuan Rusli, M., Abdul Ghani, R.
& Ailie, S.S. 2018. A systematic approach of rock slope stability
assessment: A case study at Gunung Kandu, Gopeng, Perak, Malaysia.
Sains Malaysiana 47(7):
1413-1421.
Ghani,
M.F.A., Norbert, S., Goh, T.L., Tuan Rusli,
M. & Abdul Ghani, R. 2016. Study of lineament density in potential
evaluation of rock fall in Kinta Valley. Sains
Malaysiana 45(12): 1887-1896.
Goh,
T.L., Ainul Mardhiyah,
M.R., Nur Amanina,
M., Abdul Ghani, R., Nur Ailie,
S.S. & Tuan Rusli, M. 2016. Rock slope
stability assessment using slope mass rating (SMR) method: Gunung
Lang Ipoh Malaysia. Scholar Journal of Engineering and Technology
4(4): 185-192.
Guzzetti,
F., Cardinali, M., Reichenbach,
P., Cipolla, F., Sebastiani,
C., Galli, M. & Salvati, P. 2004.
Landslides triggered by the 23 November 2000 rainfall event in the
Imperia Province, Western Liguria, Italy. Engineering Geology
73(3-4): 229-245.
Hoek,
E. & Bray, J. 1981. Rock Slope Engineering. 3rd ed. London:
The Institution of Miningand Metallurgy.
Ingham,
F.T. & Bradford, E.F. 1960. The Geology and Mineral Resources
of the Kinta Valley, Perak. No. 9. Federation of Malaya: Geological
Survey.
Lato, M.J. & Vöge,
M. 2012. Automated mapping of rock discontinuities in 3D LiDAR and
photogrammetry models. International Journal of Rock Mechanics
and Mining Sciences 54: 150-158.
Marquinez, J., Duarte, R.M.,
Farias, P. & Sanchez, M.J. 2003. Predictive GIS-based model
of rockfall activity in mountain cliffs. Natural Hazards 30(3):
341-360.
Muhammad,
R.F. & Tjia, H.D. 2003. The morphostructures
of Kinta Valley karst. Bulletin of the Geological Society of
Malaysia 46: 319-328.
Norbert,
S., Ghani, M.F.A., Azimah, H., Goh, T.L.,
Abdul Ghani, R., Noraini, S., Tuan Rusli,
T.M. & Lee, K.E. 2015. Assessment of rockfall
potential of limestone hills in the Kinta Valley. Journal of
Sustainability Science and Management 10(2): 24-34.
Nur Amanina,
M., Goh, T.L., Ainul Mardhiyah,
M.R., Abdul Ghani, R., Ailie, S.S., Norbert,
S., Noraini, S., Lee, K.E. & Tuan Rusli,
M. 2018. The geomechanical strength of
carbonate rock in Kinta valley, Ipoh, Perak Malaysia. AIP Conference
Proceedings 1940: 020046-1 - 020046-8. doi:
10.1063/1.5027961.
Priest,
S.D. 1993. The collection and analysis of discontinuity orientation
data for engineering design, with examples. In Rock Testing and
Site Characterization, edited by Hudson, J.A. Oxford: Pergamon
Press. pp. 167-192.
Priest,
S.D. & Hudson, J. 1981. Estimation of discontinuity spacing
and trace length using scanline surveys. International Journal
of Rock Mechanics and Mining Sciences & Geomechanics
Abstracts 18(3): 183-197.
Romana, M. 1985. New adjustment
ratings for application of Bieniawski
classification to slopes. Proceedings of the International Symposium
on Role of Rock Mechanics, Zacatecas, Mexico. pp. 49-53.
Rossi,
G. 1986. Karst and structure in tropical areas: The Malagasi
example. In New Direction in Karst: Proceedings of the Anglo-French
Symposium, edited by Paterson, K. & Sweeting M.M. Norwich:
Geo Books. 1983: 189-212.
Song, L.H.
1989. Geological structure: An important factor controlling karst
development. In New Direction in Karst: Proceedings of
the Anglo-French Symposium. Paterson, K. & Sweeting M.M.
Norwich: Geo Books. 1983: 165-174.
Spreafico, M.C., Perotti, L., Cervi, F., Bacenetti, M., Bitelli, G., Girelli, V.A., Mandanici, E., Tini, M.A. & Borgatti, L. 2015.
Terrestrial remote sensing techniques to complement conventional
geomechanical surveys for the assessment of landslide hazard:
The San Leo case study (Italy). European Journal of Remote Sensing
48(1): 639-660.
Sturzenegger, M. & Stead,
D. 2009. Close-range terrestrial digital photogrammetry and terrestrial
laser scanning for discontinuity characterization on rock cuts.
Engineering Geology 106(3-4): 163-182.
Tan,
B.K. 1988. Geologi Kejuruteraan
Kawasan Sekitaran
Ipoh, Perak. (Engineering geology of the Ipoh area, Perak).
Laporan Akhir
Projek Penyelidikan No.7/86, Sept. 1988, UKM. p. 74.
Tjia, Hong Djin.
1969. Slope development in tropical karst. Zeitschrift
fuer Geomorphologie
13(3): 260-66.
Yiu, K. & King, B. 2009. Stereonet data from terrestrial laser scanner point clouds.
Survey Review 41(314): 324-338. doi:
10.1179/003962609X45173.
*Corresponding author;
email: rosfmuhammad@um.edu.my
|