Sains Malaysiana 49(1)(2020): 1-10

http://dx.doi.org/10.17576/jsm-2020-4901-01

 

Multifarious Roles of Feeding Behaviours in Rove Beetle, Paederus fuscipes

(Peranan Multifarius dalam Tingkah Laku Pemakanan Kumbang Rove, Paederus fuscipes)

 

WAN FATMA ZUHARAH1,2* & SUFIAN MARYAM1

 

1School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia

 

2Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia

 

Received: 17 October 2018/Accepted: 21 October 2019

 

Abstract

The rice green leafhopper Nephotettix virescens Distant (Hemiptera: Cicadellidae), zigzag leafhopper Recilia dorsalis Motschulsky (Hemiptera: Cicadellidae), and brown planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) are the most economically important insect pests infesting rice crop.  Paederus fuscipes Curtis has been reported as the natural predator for these rice pest species in Southeast Asia. Under laboratory conditions, we evaluated the prey preference of this generalist predator when it encountered the three main agricultural pests of rice plant. P. fuscipes typically displayed a Type II functional response for all prey species. However, at high prey densities they consumed predominantly R. dorsalis with highest attack rate on dead R. dorsalis prey. Conversely, significantly highest time was needed to handle live R. dorsalis. When various density of preys was tested simultaneously, the predator showed greater preferences towards R. dorsalis and Ni. lugens. We observed the behavioral response of P. fuscipes predator on its prey items. Highest number of searching and capturing attempt was most frequently displayed on live Ni. lugens prey species. Whereas, P. fuscipes spent more feeding time in consuming dead prey compared to the alive ones. Overall, P. fuscipes showed successful control of small and soft body crop pests at low prey density.

 

Keywords: Biological control; functional response; Paedarus; prey preference; rice pests

 

Abstrak

Lelompat daun hijau Nephotettix virescens Distant (Hemiptera:Cicadellidae), lelompat zigzag Recilia dorsalis Motschulsky (Hemiptera:Cicadellidae) dan lelompat pokok perangNilaparvata lugens Stål (Hemiptera: Delphacidae) merupakan perosak penting ekonomi yang menyerang tanaman padi. Paederus fuscipes Curtis menghuraikan sebagai pemangsa semula jadi untuk kesemua spesies perosak padi di Asia Tenggara. Di dalam keadaan makmal, kami menilai pemilihan mangsa untuk pemangsa ini semasa berhadapan dengan tiga jenis perosak utama pertanian padi. P. fuscipes menunjukkan tindak balas fungi jenis II untuk kesemua spesies mangsa, tetapi pada kepadatan tinggi mereka lebih menggemariR. dorsalis. Kadar serangan tertinggi diperhatikan padaR. dorsalis yang telah mati. Sebaliknya, kadar masa pengendalian tertinggi diterima olehR. dorsalis yang hidup. Semasa pelbagai kepadatan diuji pada masa yang sama, pemangsa menunjukkan pemilihan yang lebih besar terhadapR. dorsalis danNi. lugens. Kami juga memerhatikan tindak balas perlakuan oleh pemangsaP. fuscipes terhadap mangsa. Percubaan untuk mencari dan menangkap banyak ditunjukkan pada spesies mangsa Ni. lugens yang hidup. Manakala, P. fuscipes menghabiskan lebih masa makan pada mangsa yang telah mati berbanding yang masih hidup. Secara keseluruhan, P. fuscipes menunjukkan keberjayaan dalam mengawal perosak pertanian bertubuh kecil dan lembut pada kepadatan yang rendah.

 

Kata kunci: Kawalan biologi; Paedarus; pemilihan mangsa; perosak padi; tindak balas fungsi

References

Allan, J.D., Flecker, A.S. & McClintock, N.L. 1987. Prey preference of stoneflies: Sedentary vs mobile prey. Oikos 49: 323-331.

Backus, E.A., Serrano, M.S. & Ranger, C.M. 2005. Mechanisms of hopperburn: An overview of insect taxonomy, behavior and physiology. Annual Review of Entomology 50: 125-151.

Bong, L.J., Neoh, K.B., Jaal, Z. & Lee, C.Y. 2015. Paederus outbreaks in human settings: A review of current knowledge. Journal of Medical Entomology52: 517-526.

Bong, L.J., Neoh, K.B., Jaal, Z. & Lee, C.Y. 2012. Life table of Paederus fuscipes (Coleoptera: Staphylinidae). Journal of Medical Entomology 49: 451-460.

Chesson, J. 1982. Estimation and analysis of parasitoid search and attack parameters from field data. Environmental Entomol. 11: 531-537.

Fernández-Arhex, V. & Corley, J.C. 2003. The functional response of parasitoids and its implications for biological control. Biocontrol of Science and Technology 13: 403-413.

Frank, J.H. & Kanamitsu, K. 1987. Paederus sensu lato (Coleoptera: Staphylinidae): Natural history and medical importance. Journal of Medical Entomology 24: 155-191.

Fujita, D., Kohli, A. & Horgan, F.G. 2013. Rice resistance to planthoppers and leafhoppers. Critical Review of Plant Science 32: 162-191.

Ganjisaffar, F. & Perring, T.M. 2015. Prey stage preference and functional response of the predatory mite Galendromus flumenis to Oligonychus pratensis. Biological Control 82: 40-45.

Gerling, D., Roitberg, B.D. & Mackauer, M. 1990. Instar-specific defense of the pea aphid, Acyrthosiphon pisum: Influence on oviposition success of the parasite Aphelinus asychis (Hymenoptera: Aphelinidae). Journal of Insect Behaviour 3: 501-514.

Gontijo, L.M., Nechols, J.R., Margolies, D.C. & Cloyd, R.A. 2012. Plant architecture and prey distribution influence foraging behavior of the predatory mite Phytoseiulus persimili (Acari: Phytoseiidae). Experimental and Applied Acarology 56: 23-32.

Hibino, H. 1996. Biology and epidemiology of rice viruses. Annual Review of Phytopathology 34: 249-274.

Holling, C.S. 1966. The functional response of invertebrate predators to prey density.  Memoirs of Entomological Society of Canada 48: 1-86.

Holling, C.S. 1965. The functional response of predators to prey density and its role in mimicry and population regulation. Memoirs of Entomological Society of Canada 45: 1-60.

Holling, C.S. 1959. The components of predation as revealed by a study of small-mammal predation of the European Pine Sawfly. The Canadian Entomologist 91: 293-320.

Hoyle, J.A. & Keast, A. 1987. The effect of prey morphology and size on handling time in a piscivore, the largemouth bass (Micropterus salmoides). Canadian Journal of Zoology 65: 1972-1977.

Jeschke, J.M., Kopp, M. & Tollrian, R. 2002. Predator functional responses: Discriminating between handling and digesting prey. Ecological Monograph 72: 95-112.

Juliano, S.A. 2001. Non-linear curve fitting: Predation and functional response curve. Design and Analysis of Ecological Experiment. Oxford: Oxford University Press. pp. 178-196.

Kalshoven, L.G.E. & Van der Laan, P.A. 1981. Pests of Crops in Indonesia. Indonesia: PT Ichtiar Baru-Van Hoeve. p. 107.

Kramer, D.L. & McLaughlin, R.L. 2001. The behavioral ecology of intermittent locomotion. American Zoologist 41: 137-153.

Kundu, M., Sharma, D., Brahma, S., Pramanik, S., Saha, G.K. & Aditya, G. 2014. Insect predators of mosquitoes of rice fields: Portrayal of indirect interactions with alternative prey. Journal of Entomological and Zoological Studies 2: 97-103.

Lafferty, K.D. & Kuris, A.M. 2002. Trophic strategies, animal diversity and body size. Trends in Ecology and Evolutionary 17: 507-513.

Lott, D.A. & Anderson, R. 2011. The Staphylinidae (rove beetles) of Britain and Ireland. Part 7 and 8: Oxyporinae, Steininae, Euaesthetinae, Pseudopsinae, Paederinae, Staphylininae. RES Handbooks for the identification of British Insects. Volume 12 part 7.

Manley, G.V. 1977. Paederus fuscipes (Coleoptera: Staphylinidae): A predator of rice fields in West Malaysia. Entomophaga 22: 47-59.

Manly, B.F.J. 1974. A model for certain types of selection experiments. Biometrics 30: 281-294.

Maryam, S., Fadzly, N. & Zuharah, W.F. 2017. Abundance, distribution and dispersal time of Paederus fuscipes (Coleoptera: Staphylinidae) and its association to human settings. Tropical Biomedicine 34: 224-236.

Murdoch, W.W. 1969. Switching in general predators: Experiments on predator specificity and stability of prey populations. Ecological Monograph 39: 335-354.

Nault, L.R. & Ammar, E.D. 1989. Leafhopper and planthopper transmission of plant viruses. Annual Review of Entomology 34: 503-529.

Nylin, S. & Gotthard, K. 1998. Plasticity in life-history traits. Annual Review of Entomology 43: 63-83.

Oerke, E.C. 2006. Crop losses to pests.  Journal of Agricultural Science 144: 31-43.

Parajulee, M.N., Shrestha, R.B., Leser, J.F., Wester, D.B. & Blanco, C.A. 2006. Evaluation of the functional response of selected arthropod predators on bollworm eggs in the laboratory and effect of temperature on their predation efficiency. Environmental Entomology 35: 379-386.

Peters, R.H. 1983. The Ecological Implications of Body Size. Cambridge: Cambridge University Press. p. 329.

Reis, P.R., Sousa, E.O., Teodoro, A.V. & Neto, M.P. 2003. Effect of prey densities on the functional and numerical response of two species of predaceous mites (Acari: Phytoseiidae). Neotropical Entomology 32: 461-467.

Rogers, D.J. 1972. Random search and insect population models. J. Anim. Ecol. 41: 69-383.

Schmidt-Nielsen, K. 1984. Scaling: Why is Animal Size so Important? Cambridge: Cambridge University Press. p. 241.

Schoener, T.W. 1968. Size of feeding territories among birds. Ecology 49: 123-141.

Stephens, D.W. & Krebs, J.R. 1986. Foraging Theory. Princeton: Princeton University Press. p. 247.

Timms, J.E., Oliver, T.H., Straw, N.A. & Leather, S.R. 2008. The effects of host plant on the coccinellid functional response: Is the conifer specialist Aphidecta obliterata (L.) (Coleoptera: Coccinellidae) better adapted to spruce than the generalist Adalia bipunctata (L.) (Coleoptera: Coccinellidae)?. Biological Control 47: 273-281.

Vézina, A.F. 1985. Empirical relationships between predator and prey size among terrestrial vertebrate predators. Oecologia 67: 555-565.

Werner, E.E. 1974. The fish size, prey size, handling time relation in several sunfishes and some implications. Journal of Fish Research Board Canada 31: 1531-1536.

Wilson, M.R. & Claridge, M.F. 1991. Handbook for the Identification of Leafhoppers and           Planthoppers of Rice. Wallingford: CAB International. p. 142.

Xiao, Y. & Fadamiro, H.Y. 2010. Functional responses and prey-stage preferences of three species of predacious mites (Acari: Phytoseiidae) on citrus red mite, Panonychus citri (Acari: Tetranychidae). Biological Control 53: 345-352.

Xiao, Y., Osborne, L.S., Chen, J. & McKenzie, C.L. 2013. Functional responses and prey-stage preferences of a predatory gall midge and two predacious mites with twospotted spider mites, Tetranychus urticae, as host. Journal of Insect Science 13: 8.

Zuharah, W.F. & Lester, P.J. 2011. Are exotic invaders less susceptible to native predators? A test using native and exotic mosquito species in New Zealand. Population Ecology 53: 307-317.

 

*Corresponding author; email: wfatma@usm.my