Sains Malaysiana 49(1)(2020):
1-10
http://dx.doi.org/10.17576/jsm-2020-4901-01
Multifarious Roles of Feeding Behaviours in Rove Beetle, Paederus fuscipes
(Peranan Multifarius dalam Tingkah Laku Pemakanan Kumbang Rove, Paederus fuscipes)
WAN FATMA ZUHARAH1,2* & SUFIAN MARYAM1
1School of Biological
Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
2Vector Control Research
Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
Received: 17 October 2018/Accepted: 21 October 2019
Abstract
The rice green leafhopper Nephotettix virescens Distant (Hemiptera: Cicadellidae), zigzag leafhopper Recilia dorsalis Motschulsky (Hemiptera: Cicadellidae), and brown planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) are the most economically important insect
pests infesting rice crop. Paederus fuscipes Curtis has been reported as the natural predator for these rice
pest species in Southeast Asia. Under laboratory conditions, we evaluated the
prey preference of this generalist predator when it encountered the three main
agricultural pests of rice plant. P. fuscipes typically
displayed a Type II functional response for all prey species. However, at high
prey densities they consumed predominantly R. dorsalis with highest attack rate on dead R. dorsalis prey. Conversely, significantly highest time was
needed to handle live R. dorsalis. When various density of preys was tested simultaneously, the predator showed greater
preferences towards R. dorsalis and Ni. lugens. We
observed the behavioral response of P. fuscipes predator on its prey items. Highest number of
searching and capturing attempt was most frequently displayed on live Ni. lugens prey species. Whereas, P. fuscipes spent more
feeding time in consuming dead prey compared to the alive ones. Overall, P. fuscipes showed
successful control of small and soft body crop pests at low prey density.
Keywords: Biological control; functional response; Paedarus; prey preference; rice pests
Abstrak
Lelompat daun hijau Nephotettix virescens Distant (Hemiptera:Cicadellidae), lelompat
zigzag Recilia dorsalis Motschulsky (Hemiptera:Cicadellidae)
dan lelompat
pokok perangNilaparvata lugens Stål (Hemiptera:
Delphacidae) merupakan perosak penting ekonomi yang menyerang tanaman padi. Paederus fuscipes Curtis menghuraikan
sebagai pemangsa
semula jadi untuk
kesemua spesies
perosak padi di Asia Tenggara.
Di dalam keadaan
makmal, kami menilai pemilihan mangsa untuk pemangsa ini semasa berhadapan
dengan tiga
jenis perosak utama
pertanian padi.
P. fuscipes menunjukkan tindak balas fungi jenis II untuk kesemua spesies
mangsa, tetapi
pada kepadatan tinggi mereka lebih
menggemariR.
dorsalis. Kadar serangan
tertinggi diperhatikan
padaR. dorsalis
yang telah mati.
Sebaliknya, kadar
masa pengendalian tertinggi
diterima olehR.
dorsalis yang hidup.
Semasa pelbagai
kepadatan diuji pada masa yang sama,
pemangsa menunjukkan
pemilihan yang lebih besar terhadapR. dorsalis danNi. lugens. Kami juga memerhatikan
tindak balas
perlakuan oleh pemangsaP. fuscipes terhadap mangsa. Percubaan untuk mencari dan menangkap
banyak ditunjukkan
pada spesies mangsa
Ni. lugens yang hidup. Manakala, P. fuscipes menghabiskan lebih masa makan pada mangsa yang telah mati berbanding
yang masih hidup.
Secara keseluruhan, P. fuscipes menunjukkan keberjayaan dalam mengawal perosak pertanian bertubuh kecil dan lembut pada
kepadatan yang rendah.
Kata kunci: Kawalan biologi; Paedarus; pemilihan mangsa;
perosak padi; tindak
balas fungsi
References
Allan, J.D., Flecker, A.S. & McClintock, N.L. 1987. Prey
preference of stoneflies: Sedentary vs mobile prey. Oikos 49: 323-331.
Backus, E.A., Serrano, M.S. & Ranger, C.M.
2005. Mechanisms of hopperburn: An overview of insect
taxonomy, behavior and physiology. Annual
Review of Entomology 50:
125-151.
Bong, L.J., Neoh, K.B., Jaal, Z. & Lee, C.Y. 2015. Paederus outbreaks in human settings: A
review of current knowledge. Journal of
Medical Entomology52: 517-526.
Bong, L.J., Neoh, K.B., Jaal,
Z. & Lee, C.Y. 2012. Life table of Paederus
fuscipes (Coleoptera: Staphylinidae). Journal
of Medical Entomology 49: 451-460.
Chesson, J. 1982. Estimation
and analysis of parasitoid search and attack parameters from field data. Environmental Entomol. 11: 531-537.
Fernández-Arhex, V. & Corley, J.C. 2003. The functional response
of parasitoids and its implications for biological control. Biocontrol
of Science and Technology 13:
403-413.
Frank, J.H. & Kanamitsu,
K. 1987. Paederus sensu lato
(Coleoptera: Staphylinidae): Natural history and medical importance. Journal of Medical Entomology 24:
155-191.
Fujita, D., Kohli, A. & Horgan, F.G.
2013. Rice resistance to planthoppers and
leafhoppers. Critical Review of Plant Science 32: 162-191.
Ganjisaffar, F. & Perring, T.M. 2015. Prey stage
preference and functional response of the predatory mite Galendromus flumenis to Oligonychus
pratensis. Biological Control 82:
40-45.
Gerling, D., Roitberg, B.D.
& Mackauer, M. 1990. Instar-specific defense of the pea aphid, Acyrthosiphon pisum: Influence on
oviposition success of the parasite Aphelinus
asychis (Hymenoptera: Aphelinidae). Journal
of Insect Behaviour 3: 501-514.
Gontijo, L.M., Nechols, J.R., Margolies, D.C. & Cloyd,
R.A. 2012. Plant architecture and prey distribution influence foraging behavior
of the predatory mite Phytoseiulus
persimili (Acari: Phytoseiidae). Experimental
and Applied Acarology 56: 23-32.
Hibino, H. 1996. Biology and
epidemiology of rice viruses. Annual Review of Phytopathology 34: 249-274.
Holling, C.S. 1966. The
functional response of invertebrate predators to prey density. Memoirs of Entomological Society of Canada 48: 1-86.
Holling, C.S. 1965. The functional response of predators to
prey density and its role in mimicry and population regulation. Memoirs of Entomological Society of Canada 45: 1-60.
Holling, C.S. 1959. The
components of predation as revealed by a study of small-mammal predation of the
European Pine Sawfly. The Canadian
Entomologist 91: 293-320.
Hoyle, J.A. & Keast, A.
1987. The effect of prey morphology and size on handling time in a piscivore,
the largemouth bass (Micropterus
salmoides). Canadian Journal of
Zoology 65: 1972-1977.
Jeschke, J.M., Kopp, M. & Tollrian, R. 2002. Predator
functional responses: Discriminating between handling and digesting prey. Ecological Monograph 72: 95-112.
Juliano, S.A. 2001. Non-linear curve fitting: Predation
and functional response curve. Design and Analysis of Ecological Experiment.
Oxford: Oxford University Press. pp. 178-196.
Kalshoven, L.G.E. & Van
der Laan, P.A. 1981. Pests of Crops in
Indonesia. Indonesia: PT Ichtiar Baru-Van Hoeve. p. 107.
Kramer, D.L. &
McLaughlin, R.L. 2001. The behavioral ecology of intermittent locomotion. American Zoologist 41: 137-153.
Kundu, M., Sharma, D.,
Brahma, S., Pramanik, S., Saha, G.K. & Aditya, G. 2014. Insect predators of
mosquitoes of rice fields: Portrayal of indirect interactions with alternative
prey. Journal of Entomological and
Zoological Studies 2: 97-103.
Lafferty, K.D. & Kuris,
A.M. 2002. Trophic strategies, animal diversity and body size. Trends in Ecology and Evolutionary 17:
507-513.
Lott, D.A. & Anderson, R. 2011. The Staphylinidae (rove beetles) of Britain
and Ireland. Part 7 and 8: Oxyporinae, Steininae, Euaesthetinae, Pseudopsinae,
Paederinae, Staphylininae. RES
Handbooks for the identification of British Insects. Volume 12 part 7.
Manley, G.V. 1977. Paederus fuscipes (Coleoptera:
Staphylinidae): A predator of rice fields in West Malaysia. Entomophaga 22: 47-59.
Manly, B.F.J. 1974. A model
for certain types of selection experiments. Biometrics 30: 281-294.
Maryam, S., Fadzly, N. & Zuharah, W.F. 2017. Abundance, distribution and
dispersal time of Paederus fuscipes (Coleoptera: Staphylinidae) and
its association to human settings. Tropical
Biomedicine 34: 224-236.
Murdoch, W.W. 1969. Switching
in general predators: Experiments on predator specificity and stability of prey
populations. Ecological Monograph 39:
335-354.
Nault, L.R. & Ammar, E.D. 1989. Leafhopper and planthopper transmission of plant viruses. Annual
Review of Entomology 34: 503-529.
Nylin, S. & Gotthard, K.
1998. Plasticity in life-history traits. Annual
Review of Entomology 43: 63-83.
Oerke, E.C. 2006. Crop losses to pests. Journal of Agricultural Science 144: 31-43.
Parajulee, M.N., Shrestha, R.B., Leser,
J.F., Wester, D.B. & Blanco, C.A. 2006. Evaluation of the functional
response of selected arthropod predators on bollworm eggs in the laboratory and
effect of temperature on their predation efficiency. Environmental
Entomology 35:
379-386.
Peters, R.H. 1983. The Ecological Implications of Body Size.
Cambridge: Cambridge University Press. p. 329.
Reis, P.R., Sousa, E.O.,
Teodoro, A.V. & Neto, M.P. 2003. Effect of prey densities on the functional
and numerical response of two species of predaceous mites (Acari:
Phytoseiidae). Neotropical Entomology 32: 461-467.
Rogers, D.J. 1972. Random
search and insect population models. J.
Anim. Ecol. 41: 69-383.
Schmidt-Nielsen, K. 1984. Scaling: Why is Animal Size so Important? Cambridge: Cambridge University
Press. p. 241.
Schoener, T.W. 1968. Size of
feeding territories among birds. Ecology 49: 123-141.
Stephens, D.W. & Krebs,
J.R. 1986. Foraging Theory.
Princeton: Princeton University Press. p. 247.
Timms, J.E., Oliver, T.H.,
Straw, N.A. & Leather, S.R. 2008. The effects of host plant on the
coccinellid functional response: Is the conifer specialist Aphidecta obliterata (L.) (Coleoptera: Coccinellidae) better
adapted to spruce than the generalist Adalia
bipunctata (L.) (Coleoptera: Coccinellidae)?. Biological Control 47: 273-281.
Vézina, A.F. 1985. Empirical
relationships between predator and prey size among terrestrial vertebrate
predators. Oecologia 67: 555-565.
Werner, E.E. 1974. The fish
size, prey size, handling time relation in several sunfishes and
some implications. Journal
of Fish Research Board Canada 31: 1531-1536.
Wilson, M.R. & Claridge,
M.F. 1991. Handbook
for the Identification of Leafhoppers and
Planthoppers of Rice. Wallingford: CAB International.
p. 142.
Xiao, Y. & Fadamiro, H.Y.
2010. Functional responses and prey-stage preferences of three species of
predacious mites (Acari: Phytoseiidae) on citrus red mite, Panonychus citri (Acari: Tetranychidae). Biological Control 53: 345-352.
Xiao, Y., Osborne, L.S.,
Chen, J. & McKenzie, C.L. 2013. Functional responses and prey-stage
preferences of a predatory gall midge and two predacious mites with twospotted
spider mites, Tetranychus urticae, as
host. Journal of Insect Science 13:
8.
Zuharah, W.F. & Lester,
P.J. 2011. Are exotic invaders less susceptible to native predators? A test
using native and exotic mosquito species in New Zealand. Population Ecology 53: 307-317.
*Corresponding
author; email: wfatma@usm.my