Sains Malaysiana
49(1)(2020): 113-119
http://dx.doi.org/10.17576/jsm-2020-4901-13
Photoreceptor Therapy: Generation of Neurosphere-Like Cells from Human Mesenchymal Stem Cells
Expressing Erythropoietin
(Terapi Fotoreceptor: Generasi Sel Seperti Sfera Neuro daripada Sel Stem Mesenkima Manusia Ekspresi Eritropoletin)
MOK
POOI LING1,2,3*, SHIRLEY DING SUET LEE2, AISHA FARHANA1,
BADR ALZAHRANI1, MOHAMMED SAFWAN ALI KHAN2 & SURESH
KUMAR3,4,5*
1Department of Clinical Laboratory Sciences, College of Applied Medical
Sciences, Jouf University, Sakaka,
P.O. Box 2014, Aljouf Province, Saudi
Arabia
2Department of Biomedical Science, Faculty of Medicine and Health
Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan,
Malaysia
3Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
4Department of Medical Microbiology and Parasitology, Faculty of
Medicine and Health Sciences, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
5Institute of Bioscience, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Received: 6 September 2019/Accepted: 7 October
2019
ABSTRACT
The loss of photoreceptors
is a major concern implicated in age-macular degeneration (AMD),
a type of neurodegenerative disorder. Failure to prescribe a suitable
treatment due to the lack of understanding of the molecular pathogenesis,
and limited capacity to compensate irreparably damaged photoreceptors
in the retina have greatly contributed to the progression of visual
dysfunction. Our previous study has shown that Mesenchymal Stem
Cells (MSCs) expressing erythropoietin (EPO) could commit into photoreceptor
cell lineage. However, the efficiency of cell differentiation is
limited. The present study aims to explore the capacity of these
MSCs to form neurospheres. The cells
were transduced with lentiviral particles
encoding for human EPO and green fluorescent protein (GFP) genes,
culture-expanded and sorted before subjected for differentiation
induction into neural precursor cells. Our results showed that MSC-EPO
developed into larger neurosphere and expressed relatively higher expression of
nestin compared with MSCs alone when cultured under neural
induction medium. These preliminary findings suggested that MSC-EPO
have greater neurogenic potential than MSCs alone. Further study
is needed to evaluate the possibilities of neurosphere
to differentiate into functional photoreceptor cells. We believe
that the success of neurosphere expansion
may potentially be useful in scaling up the manufacturing of photoreceptors
in a shorter time and at an efficient cost for retinal cell replacement
therapy.
Keywords:
Erythropoietin; mesenchymal stem cells; neural differentiation; neurosphere; photoreceptor
ABSTRAK
Kehilangan
fotoreseptor menjadi
kebimbangan utama dalam degenerasi makro-usia (AMD), sejenis gangguan neurodegeneratif. Perkembangan disfungsi visual
berlaku apabila terdapat kegagalan untuk memberi rawatan
yang sesuai akibat
kekurangan pemahaman dalam patogenesis molekul dan keupayaan
terhad untuk
mengganti kerosakan fotoreseptor di retina. Kajian
terdahulu menunjukkan bahawa Sel Stem Mesenkima (MSC) yang mengungkapkan
eritropoletin (EPO) boleh
berkembang menjadi sel berketurunanan fotoreseptor. Walau bagaimanapun, kecekapan pembezaan sel adalah
terhad. Kajian
ini bertujuan untuk
meneroka keupayaan
MSCs untuk membentuk sfera neuro. Sel telah ditransduksi dengan zarah lentiviral
yang mengekod gen manusia
protein EPO dan hijau
neon (GFP), diperbanyakkan melalui
pengkulturan sel
dan ditulen sebelum
induksi diferensiasi
ke sel prekursor
saraf. Keputusan
kami menunjukkan bahawa MSC-EPO berkembang menjadi sfera neuro yang lebih besar dan menunjukkan
ekspresi nestin
yang lebih tinggi berbanding
dengan MSC sahaja
apabila dikultur di dalam medium induksi saraf. Penemuan awal ini mencadangkan
bahawa MSC-EPO mempunyai
potensi neurogen yang lebih besar daripada
MSC sahaja. Kajian
lanjut diperlukan untuk menilai kebolehan
sfera neuro untuk
membeza seterusnya kepada sel-sel fotoreseptor yang berfungsi.
Kami percaya bahawa
kejayaan pengembangan sfera neuro berpotensi digunakan untuk meningkatkan produksi fotoreseptor dalam masa yang
lebih singkat dan
pada kos
yang cekap untuk terapi
penggantian sel
retina.
Kata kunci:
Eritropoletin; fotoreseptor;
pembezaan neural; sel
stem mesenkima; sfera neuro
REFERENCES
Alsaeedi, H.A., Koh, A.E., Lam, C., Rashid, M.B.A., Harun, M.H.N., Saleh, M.F.B.M., Teh, S.W., Luu, C.D., Ng, M.H., Isa, H.M., Leow, S.N., Then, K.Y., Bastion, M.C., Mok, P.L., Muthuvenkatachalam, B.S., Samrot, A.V., Swamy, K.B., Nandakumar, J. & Kumar, S.S. 2019. Dental pulp
stem cells therapy overcome photoreceptor cell death and protects the retina in
a rat model of sodium iodate-induced retinal degeneration. J. Photochem. Photobiol. B 198: 111561. doi:
10.1016/j.jphotobiol.2019.111561.
Bhutto, I. &
Lutty, G. 2012. Understanding age-related macular degeneration (AMD):
Relationships between the photoreceptor/retinal pigment epithelium/Bruch’s
membrane/choriocapillaris complex. Mol.
Aspects Med. 33(4): 295-317. https://doi.org/10.1016/j.mam.2012.04.005.
Borhani-Haghighi, A., Ghodsi, M., Razeghinejad, M.R., Mardani, S., Mardani, M., Nikseresht, A.R., Safari, A. & Bagheri, M.H. 2012. Erythropoietin for acute multiple sclerosis in patients with
optic neuritis as a first demyelination event. Neurosciences (Riyadh) 17: 151-155.
Carelli, S., Giallongo, T., Viaggi, C.,
Gombalova, Z., Latorre, E., Mazza, M., Vaglini, F., Di Giulio, A.M. & Gorio, A. 2016. Grafted neural precursors integrate into mouse striatum,
differentiate and promote recovery of function through release of erythropoietin
in MPTP-treated mice. ASN Neuro 2016:
1-18. doi:10.1177/1759091416676147.
Chun, S.Y., Soker, S., Jang, Y.J., Kwon, T.G.
& Yoo, E.S. 2016. Differentiation of human dental pulp stem cells into
dopaminergic neuron-like cells in vitro. J. Korean Med. Sci. 31: 171-177.
doi:10.3346/jkms.2016.31.2.171.
Chung, C.S., Fujita, N., Kawahara, N., Yui,
S., Nam, E. & Nishimura, R. 2013. A comparison of neurosphere
differentiation potential of canine bone marrow-derived mesenchymal stem cells
and adipose-derived mesenchymal stem cells. J.
Vet. Med. Sci. 75: 879-886. doi: DN/JST.JSTAGE/jvms/12-0470 [pii].
Chung, H., Lee, H., Lamoke, F., Hrushesky,
W.J.M., Wood, P.A. & Jahng, W.J. 2009. Neuroprotective role of
erythropoietin by antiapoptosis in the retina. J. Neurosci. Res. 87: 2365-2374. doi:10.1002/jnr.22046.
Danielyan, L., Schäfer, R., Schulz, A., Ladewig, T., Lourhmati, A., Buadze, M., Schmitt, A.L., Verleysdonk, S., Kabisch, D., Koeppen, K., Siegel, G., Proksch, B., Kluba, T., Eckert, A., Köhle, C., Schöneberg, T., Northoff, H., Schwab, M. & Gleiter, C.H. 2009. Survival, neuron-like differentiation and functionality of
mesenchymal stem cells in neurotoxic environment: The critical role of
erythropoietin. Cell Death Differ. 16: 1599-1614. doi:10.1038/cdd.2009.95.
Ding, S.S.L., Koh, A.E., Suresh, K., Khan,
M.S.A., Alzahrani, B. & Mok, P.L. 2019a.
Genetically-modified human mesenchymal stem cells to express erythropoietin
enhances differentiation into retinal photoreceptors: An in vitro study. J. Photochem. Photobiol. B 195: 33-38.
Ding, S.S.L., Subbiah, S.K., Khan, M.S.A.,
Farhana, A. & Mok, P.L. 2019b. Empowering mesenchymal stem cells for ocular
degenerative disorders. Int. J. Mol. Sci. 20(7): 1784. doi.org/10.3390/ijms20071784.
Ding, S.L.S., Kumar,
S. & Mok, P.L. 2017. Cellular reparative mechanisms of mesenchymal stem
cells for retinal diseases. Int. J. Mol. Sci. 18(8): 1406. doi:
10.3390/ijms18081406.
Ding, J.D., Johnson, L.V., Herrmann, R.,
Farsiu, S., Smith, S.G., Groelle, M., Mace, B.E., Sullivan, P., Jamison, J.A., Kelly, U., Harrabi, O., Bollini, S.S., Dilley, J., Kobayashi, D., Kuang, B., Li, W., Pons, J., Lin, J.C. & Bowes, R.C. 2011. Anti-amyloid therapy protects against retinal pigmented
epithelium damage and vision loss in a model of age-related macular
degeneration. Proc. Natl. Acad. Sci. USA 108: E279-E287. doi:10.1073/pnas.1100901108.
Eckardt, K.U. & Kurtz, A. 2005. Regulation
of erythropoietin production. Eur. J.
Clin. Investig. 35: 13-19. doi:10.1113/jphysiol.2010.195057.
Faroni, A., Smith, R.J.P., Lu, L. & Reid,
A.J. 2016. Human schwann-like cells derived from adipose-derived mesenchymal
stem cells rapidly de-differentiate in the absence of stimulating medium. Eur. J. Neurosci. 43: 417-430.
doi:10.1111/ejn.13055.
Gupta, N., Liu, J.R., Patel, B., Solomon,
D.E., Vaidya, B. & Gupta, V. 2016. Microfluidics-based 3D cell culture
models: Utility in novel drug discovery and delivery research. Bioeng. Transl. Med. 1: 63-81.
doi:10.1002/btm2.10013.
Hassouna, I., Ott, C., Wüstefeld, L., Offen,
N., Neher, R.A., Mitkovski, M., Winkler, D., Sperling, S., Fries, L., Goebbels, S., Vreja, I.C., Hagemeyer, N., Dittrich, M., Rossetti, M.F., Kröhnert, K., Hannke, K., Boretius, S., Zeug, A., Höschen, C., Dandekar, T., Dere, E., Neher, E., Rizzoli, S.O., Nave, K.A., Sirén, A.L. & Ehrenreich, H. 2016. Revisiting adult neurogenesis and the role of erythropoietin
for neuronal and oligodendroglial differentiation in the hippocampus. Mol. Psychiatry 21: 1-16.
doi:10.1038/mp.2015.212.
Hayashi, T., Wakao, S., Kitada, M., Ose, T., Watabe, H., Kuroda, Y., Mitsunaga, K., Matsuse, D., Shigemoto, T., Ito, A., Ikeda, H., Fukuyama, H., Onoe, H., Tabata, Y. & Dezawa, M. 2013. Autologous mesenchymal stem cell-derived dopaminergic neurons
function in parkinsonian macaques. J.
Clin. Invest. 123: 272-284. doi:10.1172/JCI62516.
Ji, H.P., Xiong, Y.,
Zhang, E.D., Song, W.T., Gao, Z.L., Yao, F., Sun, H., Zhou, R.R. & Xia, X.B. 2017. Which has
more stem-cell characteristics: Müller cells or Müller cells derived from in vivo culture in neurospheres? Am.
J. Transl. Res. 9(2): 611-619.
Klassen, H. 2015. Stem cells in clinical
trials for treatment of retinal degeneration. Expert. Opin. Biol. Ther. 2598: 1-8.
doi:10.1517/14712598.2016.1093110.
Leite, C., Silva, N.T., Mendes, S., Ribeiro,
A., De Faria, J.P., Lourenço, T., dos Santos, F., Andrade, P.Z., Cardoso, C.M., Vieira, M., Paiva, A., da Silva, C.L., Cabral, J.M., Relvas, J.B. & Grãos, M. 2014. Differentiation of human umbilical cord matrix mesenchymal
stem cells into neural-like progenitor cells and maturation into an
oligodendroglial-like lineage. PLoS ONE 9: e111059. doi:10.1371/journal.pone.0111059.
Leow, S.N., Luu, C.D., Hairul Nizam, M.H.,
Mok, P.L., Ruhaslizan, R., Wong, H.S., Wan Abdul Halim, W.H., Ng, M.H., Ruszymah, B.H., Chowdhury, S.R., Bastion, M.L. & Then, K.Y. 2015. Safety and efficacy of human Wharton's jelly-derived
mesenchymal stem cells therapy for retinal degeneration. PLoS ONE 10(6): e0128973. doi: 10.1371/journal.pone.0128973.
Li, C.J., Sun, L.Y. & Pang, C.Y. 2015.
Synergistic protection of N-acetylcysteine and ascorbic acid 2-phosphate on
human mesenchymal stem cells against mitoptosis, necroptosis and apoptosis. Sci. Rep. 5: 9819.
doi:10.1038/srep09819.
Lv, W., Li, W.Y., Xu, X.Y., Jiang, H. &
Bang, O. 2015. Bone marrow mesenchymal stem cells transplantation promotes the
release of endogenous erythropoietin after ischemic stroke. Neural Regen. Res. 10(8): 1265-1270.
doi:10.4103/1673-5374.162759.
Ma, K., Fox, L., Shi, G., Shen, J., Liu, Q.,
Pappas, J.D., Cheng, J. & Qu, T. 2011. Generation of neural stem cell-like cells from bone
marrow-derived human mesenchymal stem cells. Neurol. Res. 33: 1083-1093. doi:10.1179/1743132811Y.0000000053.
Miceli, M., Dell’Aversana, C., Russo, R.,
Rega, C., Cupelli, L., Ruvo, M., Altucci, L. & Chambery, A. 2016. Secretome profiling of cytokines and growth factors reveals
that neuro-glial differentiation is associated with the down-regulation of
chemokine ligand 2 (MCP-1/CCL2) in amniotic fluid derived-mesenchymal
progenitor cells. Proteomics 16:
674-688. doi:10.1002/pmic.201500223.
Mok, P.L., Leow, S.N., Koh, A.E., Mohd Nizam,
H.H., Ding, S.L., Luu, C., Ruhaslizan, R., Wong, H.S., Halim, W.H., Ng, M.H.,
Idrus, R.B., Chowdhury, S.R., Bastion, C.M., Subbiah, S.K., Higuchi, A.,
Alarfaj, A.A. & Then, K.Y. 2017. Micro-computed tomography detection of
gold nanoparticle-labelled mesenchymal stem cells in the rat subretinal
layer. Int. J. Mol. Sci. 18(2): 345. doi: 10.3390/ijms18020345.
Mun-Fun, H., Ferdaos, N., Hamzah, S.N.,
Ridzuan, N., Hisham, N.A., Abdullah, S., Ramasamy, R., Cheah, P.S., Thilakavathy, K., Yazid, M.N. & Nordin, N. 2015. Rat full term amniotic fluid harbors highly potent stem cells. Res. Vet. Sci. 102: 89-99.
doi:10.1016/j.rvsc.2015.07.010.
Mung, K.L., Tsui, Y.P., Tai, E.W.Y., Chan,
Y.S., Shum, D.K.Y. & Shea, G.K.H. 2016. Rapid and efficient generation of
neural progenitors from adult bone marrow stromal cells by hypoxic
preconditioning. Stem Cell Res. Ther. 7:
146. doi:10.1186/s13287-016-0409-x.
Ovando-Roche, P.,
West, E.L., Branch, M.J., Sampson, R.D., Fernando, M., Munro, P., Georgiadis, A., Rizzi, M., Kloc, M., Naeem, A., Ribeiro, J., Smith, A.J., Gonzalez-Cordero, A. & Ali, R.R. 2018. Use of bioreactors for
culturing human retinal organoids improves photoreceptor yields. Stem Cell
Res. & Ther. 9: 156. doi.org/10.1186/s13287-018-0907-0.
Portmann-Lanz, C.B., Schoeberlein, A.,
Portmann, R., Mohr, S., Rollini, P., Sager, R. & Surbek, D.V. 2010. Turning
placenta into brain: Placental mesenchymal stem cells differentiate into
neurons and oligodendrocytes. Am. J.
Obstet. Gynecol. 202: 294.e1-294.e11.
Radtke, C., Schmitz, B., Spies, M., Kocsis,
J.D. & Vogt, P.M. 2009. Peripheral glial cell differentiation from
neurospheres derived from adipose mesenchymal stem cells. Int. J. Dev. Neurosci. 27: 817-823.
doi:10.1016/j.ijdevneu.2009.08.006.
Roozafzoon, R., Lashay, A., Vasei, M., Ai, J.,
Khoshzaban, A., Keshel, S.H., Barabadi, Z. & Bahrami, H. 2015. Dental pulp stem cells differentiation into retinal
ganglion-like cells in a three dimensional network. Biochem. Biophys. Res. Commun. 457: 154-160.
doi:10.1016/j.bbrc.2014.12.069.
Schwartz, S.D., Tan, G., Hosseini, H. &
Nagiel, A. 2016. Subretinal transplantation of embryonic stem cell-derived
retinal pigment epithelium for the treatment of macular degeneration: An
assessment at 4 years. Investig.
Ophthalmol. Vis. Sci. 57: ORSFc1-ORSFc9. doi:10.1167/iovs.15-18681.
Shirley Ding, S.L., Leow, S.N., Munisvaradass,
R., Koh, E.H., Bastion, M.L.C., Then, K.Y., Kumar, S. & Mok, P.L. 2016. Revisiting the role of erythropoietin for treatment of ocular
disorders. Eye (Lond) 30: 1293-1309.
doi:10.1038/eye.2016.94.
Wyse, R.D., Dunbar, G.L. & Rossignol, J.
2014. Use of genetically modified mesenchymal stem cells to treat
neurodegenerative diseases. Int. J. Mol.
Sci. 15: 1719-1745. doi:10.3390/ijms15021719.
Yang, E., Liu, N., Tang, Y., Hu, Y., Zhang,
P., Pan, C., Dong, S., Zhang, Y. & Tang, Z. 2015. Generation of
neurospheres from human adipose-derived stem cells. Biomed. Res. Int. 2015: 743714. doi: 10.1155/2015/743714.
Zhang, D., Zhang, F., Zhang, Y., Gao, X., Li,
C., Yang, N. & Cao, K. 2007. Combining erythropoietin infusion with
intramyocardial delivery of bone marrow cells is more effective for cardiac
repair. Transpl. Int. 20: 174-183.
doi:10.1111/j.1432-2277.2006.00407.x.
Zhou, Y., Chen, H., Li, H. & Wu, Y. 2016.
3D culture increases pluripotent gene expression in mesenchymal stem cells
through relaxation of cytoskeleton tension. J.
Cell Mol. Med. 21: 1073-1084. doi:10.1111/jcmm.12946.
*Corresponding author; email: rachelmok2005@gmail.com
|