Sains Malaysiana 49(1)(2020): 113-119

http://dx.doi.org/10.17576/jsm-2020-4901-13

 

Photoreceptor Therapy: Generation of Neurosphere-Like Cells from Human Mesenchymal Stem Cells Expressing Erythropoietin

(Terapi Fotoreceptor: Generasi Sel Seperti Sfera Neuro daripada Sel Stem Mesenkima Manusia Ekspresi Eritropoletin)

 

MOK POOI LING1,2,3*, SHIRLEY DING SUET LEE2, AISHA FARHANA1, BADR ALZAHRANI1, MOHAMMED SAFWAN ALI KHAN2 & SURESH KUMAR3,4,5*

 

1Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. Box 2014, Aljouf Province, Saudi Arabia

 

2Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

3Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

4Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

5Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 6 September 2019/Accepted: 7 October 2019

 

ABSTRACT

The loss of photoreceptors is a major concern implicated in age-macular degeneration (AMD), a type of neurodegenerative disorder. Failure to prescribe a suitable treatment due to the lack of understanding of the molecular pathogenesis, and limited capacity to compensate irreparably damaged photoreceptors in the retina have greatly contributed to the progression of visual dysfunction. Our previous study has shown that Mesenchymal Stem Cells (MSCs) expressing erythropoietin (EPO) could commit into photoreceptor cell lineage. However, the efficiency of cell differentiation is limited. The present study aims to explore the capacity of these MSCs to form neurospheres. The cells were transduced with lentiviral particles encoding for human EPO and green fluorescent protein (GFP) genes, culture-expanded and sorted before subjected for differentiation induction into neural precursor cells. Our results showed that MSC-EPO developed into larger neurosphere and expressed relatively higher expression of nestin compared with MSCs alone when cultured under neural induction medium. These preliminary findings suggested that MSC-EPO have greater neurogenic potential than MSCs alone. Further study is needed to evaluate the possibilities of neurosphere to differentiate into functional photoreceptor cells. We believe that the success of neurosphere expansion may potentially be useful in scaling up the manufacturing of photoreceptors in a shorter time and at an efficient cost for retinal cell replacement therapy.

 

Keywords: Erythropoietin; mesenchymal stem cells; neural differentiation; neurosphere; photoreceptor

 

ABSTRAK

Kehilangan fotoreseptor menjadi kebimbangan utama dalam degenerasi makro-usia (AMD), sejenis gangguan neurodegeneratif. Perkembangan disfungsi visual berlaku apabila terdapat kegagalan untuk memberi rawatan yang sesuai akibat kekurangan pemahaman dalam patogenesis molekul dan keupayaan terhad untuk mengganti kerosakan fotoreseptor di retina. Kajian terdahulu menunjukkan bahawa Sel Stem Mesenkima (MSC) yang mengungkapkan eritropoletin (EPO) boleh berkembang menjadi sel berketurunanan fotoreseptor. Walau bagaimanapun, kecekapan pembezaan sel adalah terhad. Kajian ini bertujuan untuk meneroka keupayaan MSCs untuk membentuk sfera neuro. Sel telah ditransduksi dengan zarah lentiviral yang mengekod gen manusia protein EPO dan hijau neon (GFP), diperbanyakkan melalui pengkulturan sel dan ditulen sebelum induksi diferensiasi ke sel prekursor saraf. Keputusan kami menunjukkan bahawa MSC-EPO berkembang menjadi sfera neuro yang lebih besar dan menunjukkan ekspresi nestin yang lebih tinggi berbanding dengan MSC sahaja apabila dikultur di dalam medium induksi saraf. Penemuan awal ini mencadangkan bahawa MSC-EPO mempunyai potensi neurogen yang lebih besar daripada MSC sahaja. Kajian lanjut diperlukan untuk menilai kebolehan sfera neuro untuk membeza seterusnya kepada sel-sel fotoreseptor yang berfungsi. Kami percaya bahawa kejayaan pengembangan sfera neuro berpotensi digunakan untuk meningkatkan produksi fotoreseptor dalam masa yang lebih singkat dan pada kos yang cekap untuk terapi penggantian sel retina.

 

Kata kunci: Eritropoletin; fotoreseptor; pembezaan neural; sel stem mesenkima; sfera neuro

 

REFERENCES

Alsaeedi, H.A., Koh, A.E., Lam, C., Rashid, M.B.A., Harun, M.H.N., Saleh, M.F.B.M., Teh, S.W., Luu, C.D., Ng, M.H., Isa, H.M., Leow, S.N., Then, K.Y., Bastion, M.C., Mok, P.L., Muthuvenkatachalam, B.S., Samrot, A.V., Swamy, K.B., Nandakumar, J. & Kumar, S.S. 2019. Dental pulp stem cells therapy overcome photoreceptor cell death and protects the retina in a rat model of sodium iodate-induced retinal degeneration. J. Photochem. Photobiol. B 198: 111561. doi: 10.1016/j.jphotobiol.2019.111561.

Bhutto, I. & Lutty, G. 2012. Understanding age-related macular degeneration (AMD): Relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol. Aspects Med. 33(4): 295-317. https://doi.org/10.1016/j.mam.2012.04.005.

Borhani-Haghighi, A., Ghodsi, M., Razeghinejad, M.R., Mardani, S., Mardani, M., Nikseresht, A.R., Safari, A. & Bagheri, M.H. 2012. Erythropoietin for acute multiple sclerosis in patients with optic neuritis as a first demyelination event. Neurosciences (Riyadh) 17: 151-155.

Carelli, S., Giallongo, T., Viaggi, C., Gombalova, Z., Latorre, E., Mazza, M., Vaglini, F., Di Giulio, A.M. & Gorio, A. 2016. Grafted neural precursors integrate into mouse striatum, differentiate and promote recovery of function through release of erythropoietin in MPTP-treated mice. ASN Neuro 2016: 1-18. doi:10.1177/1759091416676147.

Chun, S.Y., Soker, S., Jang, Y.J., Kwon, T.G. & Yoo, E.S. 2016. Differentiation of human dental pulp stem cells into dopaminergic neuron-like cells in vitro. J. Korean Med. Sci. 31: 171-177. doi:10.3346/jkms.2016.31.2.171.

Chung, C.S., Fujita, N., Kawahara, N., Yui, S., Nam, E. & Nishimura, R. 2013. A comparison of neurosphere differentiation potential of canine bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells. J. Vet. Med. Sci. 75: 879-886. doi: DN/JST.JSTAGE/jvms/12-0470 [pii].

Chung, H., Lee, H., Lamoke, F., Hrushesky, W.J.M., Wood, P.A. & Jahng, W.J. 2009. Neuroprotective role of erythropoietin by antiapoptosis in the retina. J. Neurosci. Res. 87: 2365-2374. doi:10.1002/jnr.22046.

Danielyan, L., Schäfer, R., Schulz, A., Ladewig, T., Lourhmati, A., Buadze, M., Schmitt, A.L., Verleysdonk, S., Kabisch, D., Koeppen, K., Siegel, G., Proksch, B., Kluba, T., Eckert, A., Köhle, C., Schöneberg, T., Northoff, H., Schwab, M. & Gleiter, C.H. 2009. Survival, neuron-like differentiation and functionality of mesenchymal stem cells in neurotoxic environment: The critical role of erythropoietin. Cell Death Differ. 16: 1599-1614. doi:10.1038/cdd.2009.95.

Ding, S.S.L., Koh, A.E., Suresh, K., Khan, M.S.A., Alzahrani, B. & Mok, P.L. 2019a. Genetically-modified human mesenchymal stem cells to express erythropoietin enhances differentiation into retinal photoreceptors: An in vitro study. ‎J. Photochem. Photobiol. B 195: 33-38.

Ding, S.S.L., Subbiah, S.K., Khan, M.S.A., Farhana, A. & Mok, P.L. 2019b. Empowering mesenchymal stem cells for ocular degenerative disorders. Int. J. Mol. Sci. 20(7): 1784. doi.org/10.3390/ijms20071784.

Ding, S.L.S., Kumar, S. & Mok, P.L. 2017. Cellular reparative mechanisms of mesenchymal stem cells for retinal diseases. Int. J. Mol. Sci. 18(8): 1406. doi: 10.3390/ijms18081406.

Ding, J.D., Johnson, L.V., Herrmann, R., Farsiu, S., Smith, S.G., Groelle, M., Mace, B.E., Sullivan, P., Jamison, J.A., Kelly, U., Harrabi, O., Bollini, S.S., Dilley, J., Kobayashi, D., Kuang, B., Li, W., Pons, J., Lin, J.C. & Bowes, R.C. 2011. Anti-amyloid therapy protects against retinal pigmented epithelium damage and vision loss in a model of age-related macular degeneration. Proc. Natl. Acad. Sci. USA 108: E279-E287. doi:10.1073/pnas.1100901108.

Eckardt, K.U. & Kurtz, A. 2005. Regulation of erythropoietin production. Eur. J. Clin. Investig. 35: 13-19. doi:10.1113/jphysiol.2010.195057.

Faroni, A., Smith, R.J.P., Lu, L. & Reid, A.J. 2016. Human schwann-like cells derived from adipose-derived mesenchymal stem cells rapidly de-differentiate in the absence of stimulating medium. Eur. J. Neurosci. 43: 417-430. doi:10.1111/ejn.13055.

Gupta, N., Liu, J.R., Patel, B., Solomon, D.E., Vaidya, B. & Gupta, V. 2016. Microfluidics-based 3D cell culture models: Utility in novel drug discovery and delivery research. Bioeng. Transl. Med. 1: 63-81. doi:10.1002/btm2.10013.

Hassouna, I., Ott, C., Wüstefeld, L., Offen, N., Neher, R.A., Mitkovski, M., Winkler, D., Sperling, S., Fries, L., Goebbels, S., Vreja, I.C., Hagemeyer, N., Dittrich, M., Rossetti, M.F., Kröhnert, K., Hannke, K., Boretius, S., Zeug, A., Höschen, C., Dandekar, T., Dere, E., Neher, E., Rizzoli, S.O., Nave, K.A., Sirén, A.L. & Ehrenreich, H. 2016. Revisiting adult neurogenesis and the role of erythropoietin for neuronal and oligodendroglial differentiation in the hippocampus. Mol. Psychiatry 21: 1-16. doi:10.1038/mp.2015.212.

Hayashi, T., Wakao, S., Kitada, M., Ose, T., Watabe, H., Kuroda, Y., Mitsunaga, K., Matsuse, D., Shigemoto, T., Ito, A., Ikeda, H., Fukuyama, H., Onoe, H., Tabata, Y. & Dezawa, M. 2013. Autologous mesenchymal stem cell-derived dopaminergic neurons function in parkinsonian macaques. J. Clin. Invest. 123: 272-284. doi:10.1172/JCI62516.

Ji, H.P., Xiong, Y., Zhang, E.D., Song, W.T., Gao, Z.L., Yao, F., Sun, H., Zhou, R.R. & Xia, X.B. 2017. Which has more stem-cell characteristics: Müller cells or Müller cells derived from in vivo culture in neurospheres? Am. J. Transl. Res. 9(2): 611-619.

Klassen, H. 2015. Stem cells in clinical trials for treatment of retinal degeneration. Expert. Opin. Biol. Ther. 2598: 1-8. doi:10.1517/14712598.2016.1093110.

Leite, C., Silva, N.T., Mendes, S., Ribeiro, A., De Faria, J.P., Lourenço, T., dos Santos, F., Andrade, P.Z., Cardoso, C.M., Vieira, M., Paiva, A., da Silva, C.L., Cabral, J.M., Relvas, J.B. & Grãos, M. 2014. Differentiation of human umbilical cord matrix mesenchymal stem cells into neural-like progenitor cells and maturation into an oligodendroglial-like lineage. PLoS ONE 9: e111059. doi:10.1371/journal.pone.0111059.

Leow, S.N., Luu, C.D., Hairul Nizam, M.H., Mok, P.L., Ruhaslizan, R., Wong, H.S., Wan Abdul Halim, W.H., Ng, M.H., Ruszymah, B.H., Chowdhury, S.R., Bastion, M.L. & Then, K.Y. 2015. Safety and efficacy of human Wharton's jelly-derived mesenchymal stem cells therapy for retinal degeneration. PLoS ONE 10(6): e0128973. doi: 10.1371/journal.pone.0128973.

Li, C.J., Sun, L.Y. & Pang, C.Y. 2015. Synergistic protection of N-acetylcysteine and ascorbic acid 2-phosphate on human mesenchymal stem cells against mitoptosis, necroptosis and apoptosis. Sci. Rep. 5: 9819. doi:10.1038/srep09819.

Lv, W., Li, W.Y., Xu, X.Y., Jiang, H. & Bang, O. 2015. Bone marrow mesenchymal stem cells transplantation promotes the release of endogenous erythropoietin after ischemic stroke. Neural Regen. Res. 10(8): 1265-1270. doi:10.4103/1673-5374.162759.

Ma, K., Fox, L., Shi, G., Shen, J., Liu, Q., Pappas, J.D., Cheng, J. & Qu, T. 2011. Generation of neural stem cell-like cells from bone marrow-derived human mesenchymal stem cells. Neurol. Res. 33: 1083-1093. doi:10.1179/1743132811Y.0000000053.

Miceli, M., Dell’Aversana, C., Russo, R., Rega, C., Cupelli, L., Ruvo, M., Altucci, L. & Chambery, A. 2016. Secretome profiling of cytokines and growth factors reveals that neuro-glial differentiation is associated with the down-regulation of chemokine ligand 2 (MCP-1/CCL2) in amniotic fluid derived-mesenchymal progenitor cells. Proteomics 16: 674-688. doi:10.1002/pmic.201500223.

Mok, P.L., Leow, S.N., Koh, A.E., Mohd Nizam, H.H., Ding, S.L., Luu, C., Ruhaslizan, R., Wong, H.S., Halim, W.H., Ng, M.H., Idrus, R.B., Chowdhury, S.R., Bastion, C.M., Subbiah, S.K., Higuchi, A., Alarfaj, A.A. & Then, K.Y. 2017. Micro-computed tomography detection of gold nanoparticle-labelled mesenchymal stem cells in the rat subretinal layer. Int. J. Mol. Sci. 18(2): 345. doi: 10.3390/ijms18020345.

Mun-Fun, H., Ferdaos, N., Hamzah, S.N., Ridzuan, N., Hisham, N.A., Abdullah, S., Ramasamy, R., Cheah, P.S., Thilakavathy, K., Yazid, M.N. & Nordin, N. 2015. Rat full term amniotic fluid harbors highly potent stem cells. Res. Vet. Sci. 102: 89-99. doi:10.1016/j.rvsc.2015.07.010.

Mung, K.L., Tsui, Y.P., Tai, E.W.Y., Chan, Y.S., Shum, D.K.Y. & Shea, G.K.H. 2016. Rapid and efficient generation of neural progenitors from adult bone marrow stromal cells by hypoxic preconditioning. Stem Cell Res. Ther. 7: 146. doi:10.1186/s13287-016-0409-x.

Ovando-Roche, P., West, E.L., Branch, M.J., Sampson, R.D., Fernando, M., Munro, P., Georgiadis, A., Rizzi, M., Kloc, M., Naeem, A., Ribeiro, J., Smith, A.J., Gonzalez-Cordero, A. & Ali, R.R. 2018. Use of bioreactors for culturing human retinal organoids improves photoreceptor yields. Stem Cell Res. & Ther. 9: 156. doi.org/10.1186/s13287-018-0907-0.

Portmann-Lanz, C.B., Schoeberlein, A., Portmann, R., Mohr, S., Rollini, P., Sager, R. & Surbek, D.V. 2010. Turning placenta into brain: Placental mesenchymal stem cells differentiate into neurons and oligodendrocytes. Am. J. Obstet. Gynecol. 202: 294.e1-294.e11.

Radtke, C., Schmitz, B., Spies, M., Kocsis, J.D. & Vogt, P.M. 2009. Peripheral glial cell differentiation from neurospheres derived from adipose mesenchymal stem cells. Int. J. Dev. Neurosci. 27: 817-823. doi:10.1016/j.ijdevneu.2009.08.006.

Roozafzoon, R., Lashay, A., Vasei, M., Ai, J., Khoshzaban, A., Keshel, S.H., Barabadi, Z. & Bahrami, H. 2015. Dental pulp stem cells differentiation into retinal ganglion-like cells in a three dimensional network. Biochem. Biophys. Res. Commun. 457: 154-160. doi:10.1016/j.bbrc.2014.12.069.

Schwartz, S.D., Tan, G., Hosseini, H. & Nagiel, A. 2016. Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: An assessment at 4 years. Investig. Ophthalmol. Vis. Sci. 57: ORSFc1-ORSFc9. doi:10.1167/iovs.15-18681.

Shirley Ding, S.L., Leow, S.N., Munisvaradass, R., Koh, E.H., Bastion, M.L.C., Then, K.Y., Kumar, S. & Mok, P.L. 2016. Revisiting the role of erythropoietin for treatment of ocular disorders. Eye (Lond) 30: 1293-1309. doi:10.1038/eye.2016.94.

Wyse, R.D., Dunbar, G.L. & Rossignol, J. 2014. Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Int. J. Mol. Sci. 15: 1719-1745. doi:10.3390/ijms15021719.

Yang, E., Liu, N., Tang, Y., Hu, Y., Zhang, P., Pan, C., Dong, S., Zhang, Y. & Tang, Z. 2015. Generation of neurospheres from human adipose-derived stem cells. Biomed. Res. Int. 2015: 743714. doi: 10.1155/2015/743714.

Zhang, D., Zhang, F., Zhang, Y., Gao, X., Li, C., Yang, N. & Cao, K. 2007. Combining erythropoietin infusion with intramyocardial delivery of bone marrow cells is more effective for cardiac repair. Transpl. Int. 20: 174-183. doi:10.1111/j.1432-2277.2006.00407.x.

Zhou, Y., Chen, H., Li, H. & Wu, Y. 2016. 3D culture increases pluripotent gene expression in mesenchymal stem cells through relaxation of cytoskeleton tension. J. Cell Mol. Med. 21: 1073-1084. doi:10.1111/jcmm.12946.

 

*Corresponding author; email: rachelmok2005@gmail.com

   

 

 

previous