Sains Malaysiana 49(1)(2020): 19-27
http://dx.doi.org/10.17576/jsm-2020-4901-03
PEGylated
Oleic Acid-Lecithin Liposomes (POLL) for Anticancer Drug Delivery
(Liposom
Asid Olik-Lesitin BerPEG (POLL) untuk Penghantar Ubat Anti Barah)
VICIT
RIZAL EH SUK1*, IVY CHUNG2 & MISNI MISRAN1
1Colloid Laboratory, Department of
Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur,
Federal Territory, Malaysia
2Department of Pharmacology, Faculty of
Medicine, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
Received:
6 March 2019/Accepted: 8 October 2019
ABSTRACT
Cancer is a major health issue, conferring
to more than 14.5 million deaths worldwide. Liposomes, self-assembly
amphiphilic bilayer molecules, served as excellent alternative vehicles due to
their ability to encapsulate both hydrophobic and hydrophilic anticancer drugs.
Conventional liposomes, comprised mainly phospholipids are cost-ineffective,
unstable, and easily degraded by the external environment. In this study, we
introduced PEGylated oleic acid-lecithin liposomes constructed by using C-18
monounsaturated fatty acids (oleic acid) and soy lecithin, in the presence of
DOPEPEG2000 in pH7.4, above their glass transition temperature, Tg, by employing the simple thin layer lipid
hydration method. FTIR spectrum of oleic acid, soy lecithin, and DOPEPEG2000
was studied. The average particle size without further mechanical interference
was 1102.3 nm while the zeta potential value was -18 mV, which is compatible
with the zeta potential of the red blood cell. The polydispersity index (PDI)
was reduced by 46.2% with the incorporation of the DOPEPEG2000. The
morphological study using OPM showed the presence of spherical shape liposomes
that exhibit the birefringence effect under the light field and Maltese cross
under the dark field. Encapsulation of folinic acid, methotrexate, doxorubicin,
or irinotecan resulted in greater than 75% encapsulation efficiency (EE).
Half-maximal inhibitory concentration, IC50, was significantly reduced in POLL as compared to free anticancer
drugs. Our data demonstrate POLL may be a promising alternative vehicle to
deliver various anticancer drugs to targeted tumour sites.
Keywords: Anticancer drugs; liposomes;
oleic acid; POLL; soy lecithin
ABSTRAK
Barah merupakan isu kesihatan utama yang menyebabkan lebih 14.5 juta kematian
di seluruh dunia. Liposom, iaitu molekul swabentuk dwilapis merupakan
penghantar alternatif terbaik berikutan kebolehannya untuk mengkapsulkan ubatan
anti barah hidrofobik dan hidrofilik. Liposom yang lazimnya diperbuat daripada
fosfolipid adalah tidak efektif daripada segi kos, tidak stabil dan mudah
terurai oleh persekitaran luar. Dalam kajian ini, kami memperkenalkan liposom
asid olik-lesitin berPEG yang terdiri daripada asid lemak tak tepu C-18 (asid
olik) dan lesitin soya, dengan kehadiran DOPEPEG2000 dalam pH7.4, pada suhu
lebih tinggi daripada suhu peralihan gelas Tg, menggunakan metod hidrasi lapisan nipis
lipid. Spektrum FTIR asid olik, lesitin soya, dan DOPEPEG2000 juga turut
dikaji. Purata saiz partikel adalah 1102.3 nm manakala keupayaan zeta adalah
-18 mV, sesuai dengan
keupayaan zeta sel darah merah. Indeks polisebaran telah berkurang sebanyak
46.2% dengan penambahan DOPEPEG2000. Kajian morfologi menggunakan Mikroskop
Optikal Pengutuban menunjukkan kewujudan liposom berbentuk sfera yang
menghasilkan kesan dwibiasan pada medan cerah dan silang Maltese pada medan
gelap. Pengkapsulan asid folinik, metotreksat, doksorubisin atau irinotecan
menghasilkan lebih 75% kecekapan pengkapsulan. Kepekatan separa rencatan, IC50, telah berkurang dengan signifikan pada POLL berbanding ubatan anti barah. Data menunjukkan POLL mungkin
berpotensi untuk menjadi penghantar ubatan anti barah
ke tempat yang ditujui.
Kata kunci: Asid olik; lesitin soya; liposom; POLL; ubatan anti barah
REFERENCES
Anderson, W., Kozak, D., Coleman,
V.A., Jämting, Å.K. & Trau, M. 2013. A comparative
study of submicron particle sizing platforms: Accuracy, precision
and resolution analysis of polydisperse particle size distributions.
Journal of Colloid and Interface
Science 405: 322-330.
Bae,
Y.H., Mrsny, R.J. & Park, K. 2013. Cancer
Targeted Drug Delivery: An Elusive Dream. New York: Springer.
Banerjee,
R., Tyagi, P., Li, S. & Huang, L. 2004. Anisamide-targeted stealth
liposomes: A potent carrier for targeting doxorubicin to human prostate cancer
cells. Int. J. Cancer https://doi.org/10.1002/ijc.20452.
Bansal,
D., Gulbake, A., Tiwari, J. & Jain, S.K. 2016. Development of liposomes
entrapped in alginate beads for the treatment of colorectal cancer. International Journal of Biological
Macromolecules 82: 687-695.
Beaglehole,
R., Bonita, R. & Magnusson, R. 2011. Global cancer prevention: An important
pathway to global health and development. Public
Health 125(12): 821-831.
Boeckel,
D.G., Shinkai, R.S.A., Grossi, M.L. & Teixeira, E.R. 2014. In vitro evaluation of cytotoxicity of
hyaluronic acid as an extracellular matrix on OFCOL II cells by the MTT assay. Oral Surgery, Oral Medicine, Oral Pathology
and Oral Radiology 117(6): e423-e428.
Bray,
F. & Shield, K.D. 2017. Cancer: Global burden, trends, and projections. International Encyclopedia of Public Health. 2nd ed. Oxford: Academic Press. pp.
347-368.
Chun,
S.G., Skinner, H.D. & Minsky, B.D. 2017. Radiation therapy for locally
advanced esophageal cancer. Surgical
Oncology Clinics of North America 26(2): 257-276.
Chylińska,
M., Szymańska-Chargot, M. & Zdunek, A. 2016. FT-IR and FT-Raman
characterization of non-cellulosic polysaccharides fractions isolated from
plant cell wall. Carbohydrate Polymers 154: 48-54.
Ciani,
L., Ristori, S., Bonechi, C., Rossi, C. & Martini, G. 2007. Effect of the
preparation procedure on the structural properties of oligonucleotide/cationic
liposome complexes (lipoplexes) studied by electron spin resonance and Zeta
potential. Biophysical Chemistry 131(1-3):
80-87.
Crompton,
T.R. 2006. Polymer Reference Book.
Rapra Technology Limited.
Deygen,
I.M. & Kudryashova, Е.V. 2016. New versatile approach for analysis of
PEG content in conjugates and complexes with biomacromolecules based on FTIR
spectroscopy. Colloids and Surfaces B:
Biointerfaces 141: 36-43.
Dollinger,
M., Tempero, M. & Mulvihill, S. 2002. Everyone's
Guide to Cancer Therapy: How Cancer Is Diagnosed, Treated, and Managed Day to
Day. 4th ed. Kansas: Andrews McMeel Publishing.
Duh,
Y.S., Lee, C.Y., Chen, Y.L. & Kao, C.S. 2016. Characterization on the
exothermic behaviors of cathode materials reacted with ethylene carbonate in
lithium-ion battery studied by differential scanning calorimeter (DSC). Thermochimica Acta 642: 88-94.
Eh
Suk, V.R. & Misran, M. 2017. Preparation, characterization and
physicochemical properties of DOPE-PEG2000 stabilized oleic acid-soy lecithin
liposomes (POLL). Colloids and Surfaces
A: Physicochemical and Engineering Aspects 513: 267-273.
Eh
Suk, V.R. & Misran, M. 2016. Development and characterization of
DOPEPEG2000 coated oleic acid liposomes encapsulating anticancer drugs. Journal of Surfactants and Detergents 20(2): 321-329.
Fameau,
A.L., Arnould, A. & Saint-Jalmes, A. 2014. Responsive self-assemblies based
on fatty acids. Current Opinion in
Colloid & Interface Science 19(5): 471-479.
Feng,
Z., Wen, H., Bi, R., Yang, W. & Wu, X. 2016. Prognostic impact of the time
interval from primary surgery to intravenous chemotherapy in high grade serous
ovarian cancer. Gynecologic Oncology 141(3):
466-470.
Frazier,
J.M. 1992. In-Vitro Toxicity Testing:
Applications to Safety Evaluation. Boca Raton: CRC Press.
Gebicki,
J.M. & Hicks, M. 1973. Ufasomes are stable particles surrounded by
unsaturated fatty acid membranes. Nature 243(5404):
232-234.
Gulati,
M., Grover, M., Singh, S. & Singh, M. 1998. Lipophilic drug derivatives in
liposomes. International Journal of
Pharmaceutics 165(2): 129-168.
Gupta,
M., Sharma, V. & Chauhan, N.S. 2017. Nanotechnology for oral delivery
of anticancer drugs: An insight potential A2-Andronescu, Ecaterina.
In. Nanostructures for Oral Medicine, edited
by Andronescu, E. & Grumezescu, A. Elsevier. pp. 467-510.
Hamzah,
M.A.A.M., Aruldass, C.A., Ahmad, W.A. & Setu, S.A. 2017. Effects of
surfactants on antibacterial drugs-A brief review. Malaysian Journal of Fundamental and Applied Sciences 13(2):
118-123.
Heshmat,
M. & Eltawil, A. 2017. A new sequential approach for chemotherapy treatment
and facility operations planning. Operations
Research for Health Care 18: 33-40.
Hsu,
W.H., Liu, S.Y., Chang, Y.J., Chang, C.H., Ting, G. & Lee, T.W. 2014. The
PEGylated liposomal doxorubicin improves the delivery and therapeutic
efficiency of 188Re-Liposome by modulating phagocytosis in C26 murine colon
carcinoma tumor model. Nuclear Medicine
and Biology 41(9): 765-771.
Immordino,
M.L., Franco, D. & Cattel, L. 2006. Stealth liposomes: Review of the basic
science, rationale, and clinical applications, existing and potential. International Journal of Nanomedicine 1(3):
297-315.
Ishida,
T., Kirchmeier, M.J., Moase, E.H., Zalipsky, S. & Allen, T.M. 2001.
Targeted delivery and triggered release of liposomal doxorubicin enhances
cytotoxicity against human B lymphoma cells. Biochimica et Biophysica Acta (BBA) - Biomembranes 1515(2): 144-158.
Jøraholmen,
M.W., Basnet, P., Acharya, G. & Škalko-Basnet, N. 2017. PEGylated liposomes
for topical vaginal therapy improve delivery of interferon alpha. European Journal of Pharmaceutics and
Biopharmaceutics 113: 132-139.
Kanicky,
J.R. & Shah, D.O. 2002. Effect of degree, type, and position of
unsaturation on the pKa of long-chain fatty acids. Journal of Colloid and Interface Science 256(1): 201-207.
Lai,
K.W. & Dewi, D.E.O. 2015. Medical
Imaging Technology: Reviews and Computational Applications. Singapore:
Springer Singapore.
Lasic,
D.D. 1992. Mixed micelles in drug delivery. Nature 355: 279-280.
Lehtinen,
J., Magarkar, A., Stepniewski, M., Hakola, S., Bergman, M., Róg, T.,
Yliperttula, M., Urtti, A. & Bunker, A. 2012. Analysis of cause of failure
of new targeting peptide in PEGylated liposome: Molecular modeling as rational
design tool for nanomedicine. European
Journal of Pharmaceutical Sciences 46(3): 121-130.
Levchenko,
T.S., Rammohan, R., Lukyanov, A.N., Whiteman, K.R. & Torchilin, V.P. 2002. Liposome
clearance in mice: The effect of a separate and combined presence of surface
charge and polymer coating. International
Journal of Pharmaceutics 240(1-2): 95-102.
Lewis,
H.L. & Bloomston, M. 2016. Hepatic artery infusional chemotherapy. Surgical Clinics of North America 96(2):
341-355.
Martinez-Pastor,
B. & Mostoslavsky, R. 2012. Sirtuins, metabolism, and cancer. Frontiers in Pharmacology 3: 22.
Mehta,
S.K. & Jindal, N. 2013. Mixed micelles of lecithin-tyloxapol
as pharmaceutical nanocarriers for anti-tubercular drug delivery. Colloids and Surfaces B: Biointerfaces 110:
419-425.
Menon,
P., Yin Yin, T. & Misran, M. 2015. Preparation and characterization of
liposomes coated with DEAE-Dextran. Colloids
and Surfaces A: Physicochemical and Engineering Aspects 481: 345-350.
Muthukumaran,
T. & Philip, J. 2016. Effect of phosphate and oleic acid capping on
structure, magnetic properties and thermal stability of iron oxide
nanoparticles. Journal of Alloys and
Compounds 689: 959-968.
Naeem,
S., Kiew, L.V. & Chung, L.Y. 2016. Liposomes as amphiphilic carriers:
Encapsulation and stability aspects. Sains
Malaysiana 45(1): 71-77.
Napia,
L.M.A., Rahman, I.A., Hamzah, M.Y., Mohamed, F., Mohd, H.M.K., Bastamam,
I.S.A., Sharin, S., Hidzir, N.M. & Radiman, S. 2018. Effect of gamma
irradiation on the physical stability of DPPC liposomes. Sains Malaysiana 47(6): 1235-1240.
Nii,
T. & Ishii, F. 2005. Encapsulation efficiency of water-soluble and
insoluble drugs in liposomes prepared by the microencapsulation vesicle method. International Journal of Pharmaceutics 298(1):
198-205.
Ninomiya,
K., Yamashita, T., Tanabe, Y., Imai, M., Takahashi, K. & Shimizu, N. 2016.
Targeted and ultrasound-triggered cancer cell injury using perfluorocarbon
emulsion-loaded liposomes endowed with cancer cell-targeting and fusogenic
capabilities. Ultrasonics Sonochemistry 28: 54-61.
Ohnishi,
N., Yamamoto, E., Tomida, H., Hyodo, K., Ishihara, H., Kikuchi, H., Tahara, K.
& Takeuchi, H. 2013. Rapid determination of the encapsulation efficiency of
a liposome formulation using column-switching HPLC. International Journal of Pharmaceutics 441(1-2): 67-74.
Paini,
M., Daly, S.R., Aliakbarian, B., Fathi, A., Tehrany, E.A., Perego, P.,
Dehghani, F. & Valtchev, P. 2015. An efficient liposome based method for
antioxidants encapsulation. Colloids and
Surfaces B: Biointerfaces 136: 1067-1072.
Sercombe,
L., Veerati, T., Moheimani, F., Wu, S.Y., Sood, A.K. & Hua, S. 2015.
Advances and challenges of liposome assisted drug delivery. Frontiers in Pharmacology 6: 286. https://doi.org/10.3389/fphar.2015.00286.
Singh,
V.K., Pandey, P.M., Agarwal, T., Kumar, D., Banerjee, I., Anis, A. & Pal,
K. 2016. Development of soy lecithin based novel self-assembled emulsion
hydrogels. Journal of the Mechanical
Behavior of Biomedical Materials 55: 250-263.
Soares,
P.I.P., Laia, C.A.T., Carvalho, A., Pereira, L.C.J., Coutinho, J.T., Ferreira,
I.M.M., Novo, C.M.M. & Borges, J.P. 2016. Iron oxide nanoparticles
stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI
applications. Applied Surface Science 383:
240-247.
Stevenson-Abouelnasr,
D., Husseini, G.A. & Pitt, W.G. 2007. Further investigation of the
mechanism of doxorubicin release from P105 micelles using kinetic models. Colloids and Surfaces B: Biointerfaces 55(1):
59-66.
Sun,
L., Zhou, D.S., Zhang, P., Li, Q.H. & Liu, P. 2015. Gemcitabine and
γ-cyclodextrin/docetaxel inclusion complex-loaded liposome for highly
effective combinational therapy of osteosarcoma. International Journal of Pharmaceutics 478(1): 308-317.
Suzuki,
T., Ichihara, M., Hyodo, K., Yamamoto, E., Ishida, T., Kiwada, H., Ishihara, H.
& Kikuchi, H. 2012. Accelerated blood clearance of PEGylated liposomes
containing doxorubicin upon repeated administration to dogs. International Journal of Pharmaceutics 436(1-2):
636-643.
Tan,
H.W. & Misran, M. 2013. Polysaccharide-anchored fatty acid liposome. International Journal of Pharmaceutics 441(1-2):
414-423.
Teo,
Y.Y., Misran, M., Low, K.H. & Zain, S.M. 2011. Effect of unsaturation on
the stability of C18 polyunsaturated fatty acids vesicles suspension in aqueous
solution. Bulletin of the Korean Chemical
Society 32(1): 59-64.
Varga,
Z., Mihály, J., Berényi, S. & Bóta, A. 2013. Structural characterization of
the poly(ethylene glycol) layer of sterically stabilized liposomes by means of
FTIR spectroscopy. European Polymer
Journal 49(9): 2415-2421.
Vijayakumar,
M.R., Kosuru, R., Vuddanda, P.R., Singh, S.K. & Singh, S. 2016. Trans
resveratrol loaded DSPE PEG 2000 coated liposomes: An evidence for prolonged
systemic circulation and passive brain targeting. Journal of Drug Delivery Science and Technology 33: 125-135.
Vlasova,
M.A., Rytkönen, J., Riikonen, J., Tarasova, O.S., Mönkäre, J., Kovalainen, M.,
Närvänen, A., Salonen, J., Herzig, K.H., Lehto, V.P. & Järvinen, K. 2014.
Nanocarriers and the delivered drug: Effect interference due to intravenous administration. European Journal of Pharmaceutical
Sciences 63: 96-102.
Vorbeck,
C.S., Vogelius, I.R., Banner-Voigt, M.L.V.C., Mathiesen, H.F. & Mirza, M.R.
2017. Survival and failure types after radiation therapy of vulvar cancer. Clinical and Translational Radiation
Oncology 5: 20-27.
Xu, Z.X.J. 2013. New Concept and New Way of Treatment of Cancer. Indiana:
AuthorHouse.
Yang,
Y., Lu, Y., Wu, Q.Y., Hu, H.Y., Chen, Y.H. & Liu, W.L. 2015. Evidence of
ATP assay as an appropriate alternative of MTT assay for cytotoxicity of
secondary effluents from WWTPs. Ecotoxicology
and Environmental Safety 122: 490-496.
Yom,
S.S. 2015. Radiation treatment of head and neck cancer. Surgical Oncology Clinics of North America 24(3): 423-436.
Zhang,
T., Li, Y. & Mueller, A. 2011. Phase structure of liposome in lipid
mixtures. Chemistry and Physics of Lipids 164(8): 722-726.
Zhao,
L., Temelli, F., Curtis, J.M. & Chen, L. 2015. Preparation of liposomes
using supercritical carbon dioxide technology: Effects of phospholipids and
sterols. Food Research International 77(1):
63-72.
Zofka,
A., Board, N.R.C.T.R. & Program, S.S.H.R. 2013. Evaluating Applications of Field Spectroscopy Devices to Fingerprint
Commonly Used Construction Materials. Washington, D.C.: Transportation
Research Board.
*Corresponding
author; email: vicitrizal@um.edu.my
|