Sains
Malaysiana 49(1)(2020): 57-67
http://dx.doi.org/10.17576/jsm-2020-4901-07
(Penjerapan Para Nitro-fenol dengan Karbon Aktifan
Dihasilkan daripada Alhagi)
Biochemical Engineering Department, Al-Khwarizmi
College of Engineering, University of Baghdad, Baghdad 47024, Iraq
Keywords: Adsorption;
activated carbon; alhagi; PNP; physiochemical activation
Abstrak
Kertas ini telah membentangkan satu kajian uji
kaji untuk penyingkiran
para Nitro-fenol (PNP) daripada larutan akueus
menggunakan karbon aktifan fiziokimia Alhagi (AAC). AAC telah
dicirikan dengan menggunakan SEM untuk mengkaji permukaan morfologi dan BET untuk
menganggar bahagian permukaan tertentu. Kawasan permukaan terbaik AAC ialah 641.6
m2/gm yang diperoleh pada suhu pengaktifan 600ºC dan
nisbah impregnasi 1:1 KOH. Faktor yang dikaji bagi
penjerapan ion PNP dan julatnya seperti kepekatan awal (10-50 mg/L), masa penjerapan
(30-210 min), suhu (20-50ºC) dan larutan pH (4-10). Isoterma penjerapan dan kinetik telah dikaji. Proses
penjerapan ini dimodelkan secara statistik oleh model empirik. Data
keseimbangan disuaikan kepada model isoterma Langmuir dan Freundlich
dan data ini didapati diwakili dengan baik oleh isoterma Langmuir. Persamaan kinetik tertib pertama pseudo dan tertib
kedua pseudo telah digunakan untuk mengkaji penjerapan
kinetik. Didapati bahawa penjerapan
PNP pada AAC lebih sesuai
untuk pseudo kedua dan kecekapan penyingkiran terbaik adalah
pada 97.59%.
Kata
kunci: Alhagi; karbon aktifan; penjerapan; PNP
pengaktifan fiziokimia
REFERENCES
Abdelkreem,
M. 2013. Adsorption of phenol from industrial wastewater using olive
mill waste. APCBEE Procedia 5: 349-357. https://doi.org/10.1016/j.apcbee.2013.05.060.
Ahmaruzzaman,
M. & Sharma, D.K. 2005. Adsorption of phenols from wastewater. Journal
of Colloid and Interface Science 287: 14-24.
https://doi.org/10.1016/j.jcis.2005.01.075.
Al-Obaidi,
M.A., Jarullah, A.T., Kara-Zaïtri, C. & Mujtaba, I.M. 2018. Simulation of
hybrid trickle bed reactor-reverse osmosis process for the removal of phenol
from wastewater. Computers and Chemical Engineering Received 113:
264-273.
Álvarez,
P.M., García-araya, J.F., Beltrán, F.J., Masa, F.J. & Medina, F. 2005.
Ozonation of activated carbons: Effect on the adsorption of selected phenolic
compounds from aqueous solutions. Journal
of Colloid and Interface Science 283: 503-512.
https://doi.org/10.1016/j.jcis.2004.09.014.
Arunima
Nayak, Brij Bhushan, Vartika Gupta. & P. Sharma. 2017. Chemically activated carbon from lignocellulosic
wastes for heavy metal waste-water remediation: Effect of activation
conditions. Journal of Colloid and Interface Science 493: 228-240.
https://doi.org/10.1016/j.jcis.2017.01.031.
Ayranci, E.O.D. 2005. Sorption behaviors of
some phenolic compounds onto high specific area activated carbon cloth. J. Hazard. Mater. B124: 125-132.
Azry
Borhan, Mohd Faisal Taha & Athirah Amer Hamzah 2014. Characterization of activated
carbon from wood sawdust prepared via chemical activation using potassium hydroxide. Advanced Materials Research 832: 132-137. https://doi.org/10.4028/www.scientific.net/AMR.832.132.
Bing,
H., Sharadwata, P. & Danquah, M.K. 2019. An overview of immobilized enzyme
technologies for dye, phaenolic removal from wastewater. Biochemical
Pharmacology 7(2): 102961. https://doi.org/10.1016/j.jece.2019.102961.
Bódalo,
A., Gómez, E., Hidalgo, A.M., Gómez, M., Murcia, M.D. & López, I. 2009.
Nanofiltration membranes to reduce phenol concentration in wastewater. DES 245(1-3): 680-686. https://doi.org/10.1016/j.desal.2009.02.037.
Boehm,
H.P. 1994. Some aspects of the surface chemistry of carbon blacks and other
carbons. Carbon 32(5): 759-769. https://doi.org/10.1016/0008-6223(94)90031-0.
Brasquet, C.E.S. & Le Cloirec, P. 1999.
Removal of phenolic compounds from aqueous solution by activated carbon cloths. Water Science Technology 39: 201-205.
Chandra,
T.C., Mirna, M.M., Sudaryanto, Y. & Ismadji, S. 2007. Adsorption of basic
dye onto activated carbon prepared from durian shell: Studies of adsorption
equilibrium and kinetics. Chemical Engineering Journal 127(1-3):
121-129. https://doi.org/10.1016/j.cej.2006.09.011.
Chern, J.M. & Chien, Y.W. 2002.
Adsorption of nitrophenol onto activated carbon: Isotherms and breakthrough
curves. Water Research 36: 647-655.
Daifullah,
A.A.M. & Girgis, B.S. 1998. Removal of some substituted phenols by
activated carbon obtained from agriculture waste. Water Research 32: 1169-1177.
Danish
Mohammed, Rokiah Hashim, M.N. Mohamad Ibrahim. & Othman Sulaiman. 2014. Optimized preparation for large
surface area activated carbon from date (Phoenix
dactylifera L.) stone biomass. Biomass and Bioenergy 61(320):
167-178. https://doi.org/10.1016/j.biombioe.2013.12.008.
Freundlich,
H. 1925. Capillary and colloid chemistry. Translated by Hatfield, H.S. J.
Phys. Chem. 57: 385-470.
Gowthami,
R. & Sharpudin, J. 2016. Removal of phenol from textile wastewater using
natural adsorbent. International Journal of Science, Engineering and
Technology Research 5(4): 1157-1161.
Ho, Y-S. 2016. Comments on using of
"pseudo-first-order model". Journal of Taiwan
Institute of Chemical Engineers http://dx.doi.org/10.1016/j.jtice.2016.06.032
Iwagaki,
F., Ogando, B., De Aguiar, C.L., Napolitano Viotto, V., José Heredia, F. &
Hernanz, D. 2019. Removal of phenolic, turbidity and color in sugarcane juice
by electrocoagulation as a sulfur-free process. Food Research International 122: 643-652.
Javier
M. Ochando-pulido, Ruben González-Hernández & Antonio Martinez-Ferez. 2017.
On the effect of the operating parameters for two-phase olive-oil washing
wastewater combined phenolic compounds recovery and reclamation by novel ion
exchange resins. Separation and Purification Technology 195: 50-59.
Karunarathne,
H.D.S.S. & Amarasinghe, B.M.W.P.K. 2013. Fixed bed adsorption column
studies for the removal of aqueous phenol from activated carbon prepared from
sugarcane bagasse. Energy Procedia 34: 83-90. https://doi.org/10.1016/j.egypro.2013.06.736.
Kulkarni,
S.J., Tapre, R.W., Patil, S.V. & Sawarkar, M.B. 2013. Adsorption of phenol
from wastewater in fluidized bed using coconut shell activated carbon. Procedia
Engineering 51(2012): 300-307. https://doi.org/10.1016/j.proeng.2013.01.040.
Langmuir,
I. 1916. The constitution and fundamental properties of solids and liquids. Journal of the Franklin Institute 183(1): 102-105.
Larous,
S. & Meniai, A.H. 2012. The use of sawdust as by product adsorbent of
organic pollutant from wastewater: Adsorption of phenol. Energy Procedia 18: 905-914. https://doi.org/10.1016/j.egypro.2012.05.105.
Lee
Soo Min, Jeong Hanseob, Lee Jaejung. & Young Min Ju. 2019. Using electro-coagulation treatment to remove
phenolic compounds and furan derivatives in hydrolysates resulting from
pilot-scale supercritical water hydrolysis of Mongolian oak. Renewable
Energy 138: 971-979.
Li
Jinlong, Chen Xiangyang, Xu Dongfeng. & Pan Kai. 2019. Ecotoxicology and
environmental safety immobilization of horseradish peroxidase on electrospun
magnetic nano fibers for phenol removal. Ecotoxicology and Environmental
Safety 170: 716-721. https://doi.org/10.1016/j.ecoenv.2018.12.043.
Liu
Yi-Hung, Huang Wei-Jin. & Wang Chih-Ta. 2019. Photoelectrocatalytic
oxidation of phenol by UV-assisted electrogenerated Ce (IV) in aqueous
solution. Journal of the Taiwan Institute of Chemical Engineers 102:
218-224.
Mandal
Ashanendu. & Sudip Kumar Das. 2019. Phenol adsorption from wastewater using
clarified sludge from basic oxygen furnace. Journal of Environmental
Chemical Engineering 7(4): 103259.
Md.
Ahmaruzzaman. 2008. Adsorption of phenolic compounds on low-cost adsorbents: A
review. Advances in Colloid and Interface Science 143: 48-67.
https://doi.org/10.1016/j.cis.2008.07.002.
Massart,
L. & Vandeginste, B. 1991. Chemometrics and Qualimetrics in Chemical
Engineering. New Jersey: Princeton Press.
Mishra
Shubham, Swati Singh, Shalu Rawat. & Jiwan Singh. 2019. Corn husk derived
magnetized activated carbon for the removal of phenol and para-nitrophenol from
aqueous solution: Interaction mechanism, insights on adsorbent characteristics,
and isothermal, kinetic and thermodynamic properties. Journal of Environmental Management 246: 362-373.
Moreno-Castilla,
C. 2004. Adsorption of organic molecules from aqueous solutions on carbon
materials Q. Carbon 42: 83-94.
https://doi.org/10.1016/j.carbon.2003.09.022.
Moreno-piraján,
J.C., Gómez-Cruz, R., García-Cuello, V.S. & Giraldo, L. 2010. Binary system
Cu(II)/Pb(II) adsorption on activated carbon obtained by pyrolysis of cow bone
study. Journal of Analytical and Applied Pyrolysis 89: 122-128.
https://doi.org/10.1016/j.jaap.2010.06.007.
Mounir
Daoud, Oumessaâd Benturki, Girods, P., Donnot, A. & Fontana, S. 2019.
Adsorption ability of activated carbons from Phoenix dactylifera rachis and Ziziphus
jujube stones for the removal of commercial dye and the treatment of
dyestuff wastewater mounir. Microchemical Journal 148: 493-502.
Muataz
Ali Atieh. 2014. Removal of phenol from water different types of carbon - A
comparative analysis. Procedia-Social and Behavioral Sciences 10:
136-141. https://doi.org/10.1016/j.apcbee.2014.10.031.
Muftah
H. El-Naas, Sulaiman Al-Zuhair. & Manal Abu Alhaija. 2010. Removal of phenol from
petroleum refinery wastewater through adsorption on date-pit activated carbon. Chemical
Engineering Journal 162(3): 997-1005.
https://doi.org/10.1016/j.cej.2010.07.007.
Mujtaba,
I.M. 2017. Process: Model development based on experiment and simulation. Journal
of Water Process Engineering 18(February): 20-28.
Naghmeh
Sadat Mirbagheri & Samad
Sabbaghi. 2017. A natural kaolin/γ-Fe2O3 composite as an efficient
nano-adsorbent for removal of phenol from aqueous solutions. Microporous and
Mesoporous Materials 259: 134-141.
Nouri,
S.F.H. 2004. Adsorption of p-nitrophenol in untreated and treated activated
carbon: Adsorption 10: 79-86.
Padmaja
Sudhakar Pamidimukkala & Harnish Soni. 2018. Efficient removal of organic
pollutants with activated carbon derived from palm shell: Spectroscopic
characterisation and experimental optimisation Journal of Environmental
Chemical Engineering 6(2): 3135-3149.
Ruthven,
D.M. & Wiley, J. 1985. Principles of adsorption and
adsorption inorganic ion exchange materials. AiChE Journal 31(3): 523-524.
Sridhar,
R., Uma Ramanane, U. & Rajasimman, M. 2018. ZnO nanoparticles-synthesis,
characterization and its application for phenol removal from synthetic and
pharmaceutical industry wastewater. Environmental Nanotechnology, Monitoring
& Management 10: 388-393.
Sudaryanto,
Y., Hartono, S.B., Irawaty, W., Hindarso, H. & Ismadji, S. 2006. High
surface area activated carbon prepared from cassava peel by chemical
activation. Bioresource Technology 97: 734-739.
https://doi.org/10.1016/j.biortech.2005.04.029.
Tang
Dengyong, Zheng Zheng, Lin Kui,
Luan Jingfei. & Zhang Jibiao. 2007. Adsorption of
p-nitrophenol from aqueous solutions onto activated carbon fiber. Hazardous
Materials 143: 49-56. https://doi.org/10.1016/j.jhazmat.2006.08.066.
Tang
Wenjing, Huang Huijuan, Gao Yajun, Liu Xiaoyao, Yang Xinyu,
Ni Huijun. & Zhang Jianbin. 2015. Preparation of a novel
porous adsorption material from coal slag and its adsorption properties of
phenol from aqueous solution. JMADE 88: 1191-1200.
https://doi.org/10.1016/j.matdes.2015.09.079.
Thue,
P.S., Adebayo, M.A., Lima, E.C., Sieliechi, J.M., Machado, F.M., Dotto, G.L.,
Vaghetti, J.C.P. & Dias, S.L.P. 2016. Preparation, characterization and
application of microwave-assisted activated carbons from wood chips for removal
of phenol from aqueous solution. Journal of Molecular Liquids 223:
1067-1080. https://doi.org/10.1016/j.molliq.2016.09.032.
Víctor-Ortega,
M.D., Ochando-Pulido, J.M. & Martínez-Ferez, A. 2016. Performance and
modeling of continuous ion exchange processes for phenols recovery from olive
mill wastewater. Process Safety and Environmental Protection 100:
242-251. https://doi.org/10.1016/j.psep.2016.01.017.
Wolborska, A.
1989. Adsorption on activated carbon of p-nitrophenol from aqueous
solution. Water Research 23: 85-91.
Xue Guanghai,
Gao Manglai, Gu Zheng, Luo Zhongxin.
& Hu Zhaochao. 2013.
The removal of p-Nitrophenol from aqueous solutions by adsorption
using gemini surfactants modified montmorillonites. Chemical
Engineering Journal 218: 223-231.
Yang
Wenlan, Yu Zhou, Pan Bingcai, Lu, Lv. & Zhang Weiming. 2015. Simultaneous
organic/inorganic removal from water using a new nanocomposite adsorbent: A
case study of p-Nitrophenol and phosphate. Chemical Engineering Journal 268: 399-407. https://doi.org/10.1016/j.cej.2015.01.051.
Zagklis,
D.P., Vavouraki, A.I., Kornaros, M.E. & Paraskeva, C.A. 2015. Purification
of olive mill wastewater phenols through membrane filtration and resin
adsorption/desorption. Journal of Hazardous Materials 285: 69-76.
https://doi.org/10.1016/j.jhazmat.2014.11.038.
Zambrano,
J. & Min, B. 2019. Comparison on efficiency of
electrochemical phenol oxidation in two different supporting electrolytes (NaCl
and Na2SO4) Using Pt/Ti Electrode. Environmental Technology & Innovation 15: 100382.
*Corresponding
author; email: sami@kecbu.uobaghdad.edu.iq
|