Sains Malaysiana 49(7)(2020): 1585-1596
http://dx.doi.org/10.17576/jsm-2020-4907-11
Kinetic, Isotherm, and Possible
Mechanism of Pb(II) Ion Adsorption onto Xanthated Neem (Azadirachta indica) Leaf Powder
(Kinetik, Isoterma dan
Mekanisme Kemungkinan Penjerapan Ion Pb(II) ke atas Serbuk Daun Mambu (Azadirachta indica) Terxantat)
MARDHIAH ISMAIL1,2*
& MEGAT AHMAD KAMAL MEGAT HANAFIAH1
1Faculty of
Applied Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul
Ehsan, Malaysia
2Faculty of
Applied Science, Universiti Teknologi MARA, 26400 Jengka, Pahang Darul Makmur, Malaysia
Received: 2 August 2019/Accepted:
6 March 2020
ABSTRACT
Adsorption capacity is one of the concern parameters in synthesizing an adsorbent
for wastewater treatment. In this research, a bio-sorbent prepared by treating
neem leaf powder with a chelating agent; carbon di-sulphide (CS2)
through xanthation reaction was synthesized. The effect of treating with ligand (CS2)
will be investigate since ligand will bind to metal ion. Ligand or chelating
agent can help in increasing the ability of adsorbent to bind a metal ion in an
aqueous solution. The chemistry of adsorption of Pb(II) ion on xanthated neem
leaf powder (XNL) was investigated by using batch adsorption study. The maximum
adsorption capacity, 256.41 mg g-1 at 318 K was determined from
isotherm study, obtained from Langmuir model. FTIR spectroscopy suggested that
the adsorption of Pb(II) onto XNL could possibly occur through ion exchange,
Van der Wall forces and ionic interaction.
Keywords: Adsorption;
isotherm; mechanisms; neem leaf; xanthate
ABSTRAK
Kapasiti penjerapan adalah salah satu parameter yang menjadi penentu dalam
menghasilkan penjerap bagi merawat air buangan. Dalam kajian ini,
bio-penjerap yang dihasilkan dengan merawat serbuk daun mambu dengan karbon
disulfida (CS2) melalui tindak balas xantatasi. Proses penjerapan
ion Pb(II) oleh daun mambu xantat (XNL) telah dikaji menggunakan kajian
penjerapan berperingkat. Kadar penjerapan maksimum ialah 256.41 mg g-1 diperoleh melalui kajian isoterma dengan menggunakan model Langmuir. Kajian
spektroskopi FTIR mendapati penjerapan Pb(II) ke XNL berkemungkinan berlaku
melalui pertukaran ion, ikatan Van der Wall dan interaksi ion.
Kata
kunci: Daun mambu; isoterma; mekanisme; penjerapan; xantat
REFERENCES
Behnamfard, A., Salarirad,
M.M. & Vegliò, F. 2014. Removal of Zn(II) ions from aqueous solutions by
ethyl xanthate impregnated activated carbons. Hydrometallurgy 144-145: 39-53.
https://doi.org/10.1016/j.hydromet.2013.11.017.
Bhattacharyya, K.G. &
Sharma, A. 2004. Adsorption of Pb(II) from aqueous solution by Azadirachta indica (neem) leaf powder. Journal of Hazardous Materials 113(1-3):
97-109. https://doi.org/10.1016/j.jhazmat.2004.05.034.
Bonde, J.P., Joffe, M.,
Apostoli, P., Dale, A., Kiss, P., Spano, M. & Caruso, F. 2002. Sperm count
and chromatin structure in men exposed to inorganic lead: Lowest adverse effect
levels. Occupational and Environmental
Medicine 59(4): 234-242. https://doi.org/10.1136/oem.59.4.234.
Boyd, G.E., Adamson, A.W.
& Myers, L.S. 1947. The exchange adsorption of ions from aqueous solutions
by organic zeolites. II. Kinetics. Journal
of the American Chemical Society 69(11): 2836-2848. https://doi.org/10.1021/ja01203a066.
Dubinin, M.M., Zaverina,
E.D. & Radushkevich, L.V. 1947. Sorption and structure of active carbons.
I. Adsorption of organic vapors. Journal
of Physical Chemistry 21: 1351-1362.
Gidlow, D.A. 2015. Lead
toxicity. Occupational Medicine 65(5): 348-356. https://doi.org/10.1093/occmed/kqv018.
Han, R., Wang, Y., Zhao, X.
& Xie, F. 2009. Adsorption of methylene blue by phoenix tree leaf powder in
a fixed-bed column: Experiments and prediction of breakthrough curves. Desalination 245(1-3): 284-297.
https://doi.org/10.1016/j.desal.2008.07.013.
Hanafiah, M.A.K.M., Wan
Ngah, W.S., Zolkafly, S.H., Teong, L.C. & Majid, Z.A.A. 2012. Acid blue 25
adsorption on base treated Shorea
dasyphylla sawdust: Kinetic, isotherm, thermodynamic and spectroscopic
analysis. Journal of Environmental
Sciences 24(2): 261-268. https://doi.org/10.1016/S1001-0742(11)60764-X.
Ho, Y.S. & McKay, G.
2000. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research 34(3): 735-742.
https://doi.org/10.1016/S0043-1354(99)00232-8.
Ho, Y.S. & McKay, G.
1998. A comparison of chemisorption kinetic models applied to pollutant removal
on various sorbents. Process Safety and
Environmental Protection 76: 332-340.
Jiang, G.B., Lin, Z.T.,
Huang, X.Y., Zheng, Y.Q., Ren, C.C., Huang, C.K. & Huang, Z.J. 2012.
Potential biosorbent based on sugarcane bagasse modified with
tetraethylenepentamine for removal of eosin Y. International Journal of Biological Macromolecules 50(3): 707-712. https://doi.org/10.1016/j.ijbiomac.2011.12.030.
Júnior, O.K., Gurgel,
L.V.A., de Freitas, R.P. & Gil, L.F. 2009. Adsorption of Cu(II), Cd(II),
and Pb(II) from aqueous single metal solutions by mercerized cellulose and
mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD). Carbohydrate Polymers 77(3): 643-650.
https://doi.org/10.1016/j.carbpol.2009.02.016.
Liang, S., Guo, X.Y., Feng,
N.C. & Tian, Q.H. 2010. Effective removal of heavy metals from aqueous
solutions by orange peel xanthate. Transactions
of Nonferrous Metals Society of China 20: 187-191.
https://doi.org/10.1016/S1003-6326(10)60037-4.
Liu, W.J., Zeng, F.X.,
Jiang, H. & Zhang, X.S. 2011. Adsorption of lead (Pb) from aqueous solution
with Typha angustifolia biomass
modified by SOCl2 activated EDTA. Chemical Engineering Journal 170(1): 21-28.
https://doi.org/10.1016/j.cej.2011.03.020.
Miyoung, O. & Mandla,
A.T. 2007. Pelletized ponderosa pine bark for adsorption of toxic heavy metals
from water. Bioresources 2: 66-81.
Nasuha, N., Hameed, B.H.
& Mohd Din, A.T. 2010. Rejected tea as a potential low-cost adsorbent for
the removal of methylene blue. Journal of
Hazardous Materials 175(1-3): 126-132.
https://doi.org/10.1016/j.jhazmat.2009.09.138.
Teixeira, R.N.P., Neto,
V.O.S., Vicente, J.T., Oliveira, T.C., Melo, D.Q., Silva, M.A.A. &
Nascimento, R.F. 2013. Study on the use of roasted barley powder for adsorption
of Cu2+ ions in batch experiments and in fixed-bed columns. Bioresources 8: 3556-3573.
Tiwari, D., Mishra, S.P.,
Mishra, M. & Dubey, R.S. 1999. Biosorptive behaviour of mango (Mangifera indica) and neem (Azadirachta indica) bark for Hg2+,
Cr3+ and Cd2+ toxic ions from aqueous solutions: A
radiotracer study. Applied Radiation and
Isotopes 50(4): 631-642.
Torres-Blancas, T., Roa-Morales,
G., Fall, C., Barrera-Díaz, C., Ureña-Nuñez, F. & Pavón Silva, T.B. 2013.
Improving lead sorption through chemical modification of de-oiled allspice husk
by xanthate. Fuel 110: 4-11.
https://doi.org/10.1016/j.fuel.2012.11.013.
Vigeh, M., Yokoyama, K.,
Kitamura, F., Afshinrokh, M., Beygi, A. & Niroomanesh, S. 2010. Early
pregnancy blood lead and spontaneous abortion. Women Health 50(8): 756-766.
https://doi.org/10.1080/03630242.2010.532760.
Wan Ngah, W.S., Hanafiah,
M.A.K.M. & Yong, S.S. 2008. Adsorption of humic acid from aqueous solutions
on crosslinked chitosan-epichlorohydrin beads: Kinetics and isotherm studies. Colloids and Surfaces B: Biointerfaces 65(1): 18-24.
https://doi.org/10.1016/j.colsurfb.2008.02.007.
Weng, C.H., Lin, Y.T. &
Tzeng, T.W. 2009. Removal of methylene blue from aqueous solution by adsorption
onto pineapple leaf powder. Journal of
Hazardous Materials 170(1): 417-424.
https://doi.org/10.1016/j.jhazmat.2009.04.080.
Zhu, Y., Hu, J. & Wang,
J. 2012. Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto
xanthate-modified magnetic chitosan. Journal
of Hazardous Materials 221-222: 155-161.
https://doi.org/10.1016/j.jhazmat.2012.04.026.
*Corresponding author; email: marismael@uitm.edu.my
|