Sains Malaysiana 49(7)(2020): 1697-1712
http://dx.doi.org/10.17576/jsm-2020-4907-20
Gold Nanoparticles Biosynthesized using Lignosus rhinocerotis Extracts:
Comparative Evaluation of Biostatic and Cytotoxicity Effects
(Nanozarah Emas Biosintesis menggunakan Ekstrak Lignosus rhinocerotis:
Penilaian Perbandingan Kesan Biostatik dan Kesitotoksikan)
AHMAD
YASSER HAMDI NOR AZLAN1,2, HALIZA KATAS1*, NUR QAISARA
JALLUDDIN1 & MOHD FAUZI MH BUSRA3
1Centre
for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia,
Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia
2Faculty
of Pharmacy and Health Sciences, Universiti Kuala Lumpur (Royal
College of Medicine Perak), 3, Jalan Greentown, 30450 Ipoh, Perak Darul Ridzuan, Malaysia
3Tissue
Engineering Centre, UKM Medical Centre, 56000 Cheras, Kuala Lumpur, Federal
Territory, Malaysia
Received: 18
January 2020/Accepted: 3 March 2020
ABSTRACT
Gold nanoparticles
(AuNPs) are a unique class of nanomaterials applied in biomedical applications.
Biological synthesis or biosynthesis of AuNPs offers advantages including
simple and cost-effective method as well as non-toxic to human, making it
superior to chemical synthesis. In this study, comparative evaluation was
conducted for antimicrobial and cytotoxicity effects of chemically synthesized
(Chem-AuNPs) and biosynthesized AuNPs (Bio-AuNPs). Chem- and Bio-AuNPs were
produced using sodium citrate and L.
rhinocerotis extracts,
respectively. Different methods namely hot and cold-water extraction (HWE and
CWE, respectively) were used to extract L. rhinocerotis sclerotium, a medicinal mushroom. Both types of nanoparticles were stabilized
using chitosan (CS) and characterized for their physical characteristics,
followed by determination of antibacterial and cytotoxicity effects in
vitro. Formation of AuNPs exhibited
surface plasmon resonance (SPR) band at 465-564 nm and 523-544 nm for
Chem-AuNPs and Bio-AuNPs, respectively, as
determined by UV-vis spectroscopy. CS-stabilized AuNPs had larger size of
particles than non-stabilized ones, ranging from 200 to 500 nm. Both Chem- and
Bio-AuNPs showed biostatic activity against Gram-positive bacteria (Bacillus sp. and Staphylococcus aureus)
and Gram-negative bacteria (Pseudomonas
aeruginosa and Escherichia coli).
The cytotoxicity assay for 24 h showed higher cell viability for Bio-AuNPs than
Chem-AuNPs, indicating relatively less toxicity of Bio-AuNPs. In conclusion,
Bio-AuNPs using the mushroom extracts and CS provide opportunities for
developing stable, safer, and
eco-friendly nanoparticles with effective antibacterial properties for clinical
applications.
Keywords:
Antibacterial effect; cytotoxicity; green synthesis; metal nanoparticles;
nanocomposites
ABSTRAK
Nanozarah emas
(AuNPs) merupakan satu kelas bahan nano yang unik, digunakan dalam aplikasi
bioperubatan. Sintesis secara biologi atau biosintesis AuNPs menawarkan
kelebihan termasuk kaedah sintesis yang mudah dan kos-efektif serta tidak
bertoksik kepada manusia, menjadikan kaedah ini lebih unggul berbanding
sintesis kimia. Dalam kajian ini, penilaian secara perbandingan telah dilakukan
untuk kesan antimikrob dan kesitotoksikan terhadap AuNPs yang dihasilkan secara
kimia (Chem-AuNPs) dan biologi (Bio-AuNPs). Chem- dan Bio-AuNPs dihasilkan masing-masing
menggunakan natrium sitrat dan ekstrak L. rhinocerotis.
Kaedah berbeza iaitu pengekstrakan air panas dan sejuk (masing-masing
diringkaskan sebagai HWE dan CWE) telah digunakan untuk mengekstrak sklerotium L. rhinocerotis iaitu
sejenis cendawan bernilai perubatan. Kedua-dua jenis nanozarah ini telah
distabilkan menggunakan kitosan (CS) dan ditentukan ciri-ciri fizikal
nanozarah yang terhasil, diikuti
dengan penentuan kesan antibakteria dan kesitotoksikan secara in vitro. Pembentukan AuNPs memperlihatkan jalur
resonans plasmon permukaan (SPR) pada 465-564 nm dan 523-544 nm, masing-masing
untuk Chem- dan Bio-AuNPs yang ditentukan menggunakan spektroskopi UV. AuNPs
yang distabilkan oleh CS mempunyai saiz zarah yang lebih besar berbanding AuNPs
yang tidak distabilkan, dengan saiz zarah antara 200 hingga 500 nm. Kedua-dua
Chem- dan Bio-AuNPs menunjukkan kesan biostatik terhadap bakteria gram-positif
(Bacillus sp. dan Staphylococcus
aureus) dan bakteria gram-negatif (Pseudomonas aeruginosa dan Escherichia coli). Ujian kesitotoksikan selama
24 jam menunjukkan daya kehidupan
sel yang lebih tinggi untuk Bio-AuNPs berbanding Chem-AuNPs, membuktikan
Bio-AuNPs adalah kurang toksik secara relatif. Kesimpulannya, Bio-AuNPs yang
dihasilkan menggunakan ekstrak cendawan dan CS menyediakan peluang untuk
membangunkan nanozarah yang stabil, lebih selamat dan mesra alam dengan
sifat antibakteria yang berkesan untuk aplikasi klinikal.
Kata kunci: Kerintangan antibiotik; kesitotoksikan; nanokomposit;
nanozarah logam; sintesis hijau
REFERENCES
Ahmed,
S. & Ikram, S. 2015. Synthesis of gold nanoparticles using plant extract:
An overview. Nano Research and Application 1(1): 1-6.
Ahmed,
D.S., Mohammed, T.H., Risan, M.H., Najim, L.H., Mohammed, S.S., Yusop, R.M.
& Yousif, E. 2019. Green synthesis of silver nanoparticles by plants
extract. International Journal of Chemical and Process Engineering
Research 6(1): 1-6.
Alaqad,
K. & Saleh, T.A. 2016. Gold and silver nanoparticles: Synthesis methods,
characterization routes and applications towards drugs. Journal of
Environmental & Analytical Toxicology 6: 4.
Asharavani,
P.V., Lianwu, Y. & Valiyaveettil, S. 2010. Comparison of the toxicity of
silver, gold and platinum nanoparticles in developing Zebrafish embryos. Nanotoxicology 5(1): 43-54.
Bhumkar,
D.R., Joshi, H.M., Sastry, M. & Pokharkar, V.B. 2007. Chitosan reduced gold
nanoparticles as novel carriers for transmucosal delivery of insulin. Pharmaceutical Research 24(8):
1415-1426.
Blando,
J.D., Porcja, R.J. & Turpin, B.J. 2001. Issues in the quantitation of
functional groups by FTIR spectroscopic analysis of impactor-collected aerosol
samples. Aerosol Science and Technology 35(5): 899-908.
Bonardd,
S., Schmidt, M., Saavedra-Torres, M., Leiva, A., Radic, D. & Saldías, C.
2016. Thermal and morphological behavior of chitosan/Peo blends containing gold
nanoparticles: Experimental and theoretical studies. Carbohydrate Polymers 144: 315-329.
Cinteza, L., Scomoroscenco, C., Voicu, S., Nistor, C., Nitu,
S., Trica, B., Jecu, M.L. & Petcu, C. 2018. Chitosan-stabilized Ag
nanoparticles with superior biocompatibility and their synergistic
antibacterial effect in mixtures with essential oils. Nanomaterials 8(10):
826.
Chahardoli,
A., Karimi, N., Sadeghi, F. & Fattahi, A. 2017. Green approach for
synthesis of gold nanoparticles from Nigella arvensis leaf extract and
evaluation of their antibacterial, antioxidant, cytotoxicity and catalytic
activities. Artificial Cells, Nanomedicine,
and Biotechnology 46(3): 579-588.
Chokriwal,
A., Sharma, M.M. & Singh, A. 2014. Biological synthesis of nanoparticles
using bacteria and their applications. American Journal of Pharmtech
Research 4(6): 38-61.
Czechowska-Biskup,
R., Rokita, B., Ulański, P., Rosiak, J.M., Chitin, A.O. & Derivatives,
I. 2015. Preparation of gold nanoparticles stabilized by chitosan using
irradiation and sonication methods. Progress on Chemistry and Application of
Chitin and its Derivatives 20: 18-33.
Control
for Disease and Prevention. 2019. Antibiotic
Resistance Threats in the United States, 2019. Centres for Disease Control
and Prevention, US Department of Health.
Devienne,
K.F. & Raddi, M.S.G. 2002. Screening for antimicrobial activity of natural
products using a microplate photometer. Brazilian Journal of Microbiology 33(2): 166-168.
Dubey,
S.P., Lahtinen, M. & Sillanpää, M. 2010. Tansy fruit mediated greener
synthesis of silver and gold nanoparticles. Process
Biochemistry 45(7): 1065-1071.
Eskandari-Nojedehi,
M., Jafarizadeh-Malmiri, H. & Rahbar-Shahrouzi, J. 2017. Hydrothermal green
synthesis of gold nanoparticles using mushroom (Agaricus bisporus)
extract: Physico-chemical characteristics and antifungal activity studies. Green
Processing and Synthesis 7(1): 38-47.
Esumi,
K., Houdatsu, H. & Yoshimura, T.J.L. 2004. Antioxidant action by Gold-PAMAM
dendrimer nanocomposites. Langmuir 20(7):
2536-2538.
Gurunathan,
S., Han, J., Park, J.H. & Kim, J.H. 2014. A green chemistry approach for
synthesizing biocompatible gold nanoparticles. Nanoscale Research Letters 9(1): 248.
Harimurti,
S., Rohiman, A., Sulthoni, M.A. & Idris, I. 2013. The effect of trisodium
citrate concentration on the size of gold nanoparticles. Proceeding in International Conference on Electronics
Technology and Industrial Development. pp.
282-284.
Huang,
H. & Yang, X. 2004. Synthesis of chitosan-stabilized gold nanoparticles in
the absence or presence of tripolyphosphate. Biomacromolecules 5(6): 2340-2346.
Hussain,
M.A., Shah, A., Jantan, I., Shah, M.R., Tahir, M.N., Ahmad, R. & Bukhari,
S.N.A. 2015. Hydroxypropylcellulose as a novel green reservoir for the
synthesis, stabilization, and storage of silver nanoparticles. International
Journal of Nanomedicine 10: 2079-2088.
Iravani,
S. 2011. Green synthesis of metal nanoparticles using plants. Green Chemistry 13(10): 2638-2650.
Ishak,
N.I.A.M.S., Kamarudin, K. & Timmiati, S.N. 2019. Green synthesis of metal
and metal oxide nanoparticles via plant extracts: An overview. Materials Express Research 6: 112004.
Kang, Y.,
Jung, J.Y., Cho, D., Kwon, O., Cheon, J. & Park, W. 2016. Antimicrobial
silver chloride nanoparticles stabilized with chitosan oligomer for the healing
of burns. Materials 9(4): 215.
Katas,
H., Moden, N.Z., Lim, C.S., Celesistinus, T., Yee, C.J., Ganasan, P. &
Abdalla, S.S.I. 2018. Biosynthesis and potential applications of silver and
gold nanoparticles and their chitosan-based nanocomposites in nanomedicine. Journal
of Nanotechnology 2018: Paper ID. 4290705.
Katas,
H., Lim, C.S., Nor Azlan, A.Y.H., Buang, F. & Busra, M.F.M. 2019.
Antibacterial activity of biosynthesized gold nanoparticles using biomolecules
from Lignosus rhinocerotis and chitosan. Saudi
Pharmaceutical Journal 27(2): 283-292.
Kaviya,
S. 2017. Rapid naked eye detection of arginine by pomegranate peel extract
stabilized gold nanoparticles. Journal of King Saud University-Science 31(4): 864-868
Khan, A.U., Yuan, Q., Wei, Y., Khan, G.M., Khan, Z.U.H.,
Khan, S. & Khan, F.U. 2016. Photocatalytic and antibacterial response
of biosynthesized gold nanoparticles. Journal of Photochemistry and
Photobiology B: Biology 162: 273-277.
Kiaie,
N., Aghdam, R.M., Tafti, S.H. & Emami, S.H. 2016. Statistical optimization
of chitosan nanoparticles as protein vehicles, using response surface
methodology. Journal of Applied Biomaterials and Functional Materials 14(4): 413-422.
Koperuncholan,
M. 2015. Bioreduction of chloroauric acid (Haucl4) for the synthesis of Gold
Nanoparticles (Gnps): A special empathies of pharmacological activity. International Journal of Phytopharmacy 5(4): 72-80.
Lanh Le, T., Khieu Dinh, Q., Hoa Tran, T., Phong Nguyen, H.,
Le Hien Hoang, T. & Hien Nguyen, Q. 2014. Synthesis of water soluble
chitosan stabilized gold nanoparticles and determination of uric acid. Advances in Natural Sciences: Nanoscience and Nanotechnology 5(2): 025014.
Mapala,
K. & Pattabi, M. 2017. Mimosa pudica flower extract mediated green
synthesis of gold nanoparticles. Nano World Journal 3(2): 44-50.
McBirney, S.E., Trinh, K., Wong-Beringer, A. & Armani,
A.M. 2016. Wavelength-normalized spectroscopic analysis of Staphylococcus
aureus and Pseudomonas aeruginosa growth rates. Biomedical Optics
Express 7(10): 4034-4042.
Mohan,
C.O., Gunasekaran, S. & Ravishankar, C.N. 2019. Chitosan-capped gold
nanoparticles for indicating temperature abuse in frozen stored products. npj
Science Food 3(2): 1-6.
Mohan,
J.C., Praveen, G., Chennazhi, K., Jayakumar, R. & Nair, S.V. 2013.
Functionalised gold nanoparticles for selective induction of in vitro apoptosis among human cancer cell lines. Journal
of Experimental Nanoscience 8(1): 32-45.
Mubarak
Ali, D., Thajuddin, N., Jeganathan, K. & Gunasekaran, M. 2011. Plant
extract mediated synthesis of silver and gold nanoparticles and its
antibacterial activity against clinically isolated pathogens. Colloids and Surfaces. B, Biointerfaces 85(2): 360-365.
Nayak,
M.P. 2014. Green synthesis of gold nanoparticles using Solanus lycopersicum (TOMATO) aqueous extract. World Journal of Nano Science and Technology 3(2): 74-80.
Nayfeh,
M.H. 2018. Micro and Nano Technologies
Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines:
Current and Future Trend. 1st edition.
Amsterdam: Elsevier.
Nazirov,
A., Pestov, A., Privar, Y., Ustinov, A., Modin, E. & Bratskaya, S. 2016.
One-pot green synthesis of luminescent gold nanoparticles using imidazole
derivative of chitosan. Carbohydrate Polymers 151: 649-655.
Ngo,
V.K.T., Nguyen, H.P.U., Huynh, T.P., Tran, N.N.P., Lam, Q.V. & Huynh, T.D.
2015. Preparation of gold nanoparticles by microwave heating and application of
spectroscopy to study conjugate of gold nanoparticles with antibody E. Coli O157: H7. Advances in Natural Sciences: Nanoscience and Nanotechnology 6(3):
1-6.
Noruzi,
M. 2014. Biosynthesis of gold nanoparticles using plant extracts. Bioprocess and Biosystems Engineering 38(1): 1-14.
Ojea-Jiménez, I., Romero, F.M., Bastús, N.G. & Puntes, V. 2010. Small gold
nanoparticles synthesized with sodium citrate and heavy water: Insights into
the reaction mechanism. Journal Physical Chemistry 114(4): 1800-1804.
Pantidos,
N. & Horsfall, L.E. 2014. Biological synthesis of metallic nanoparticles by
bacteria, fungi and plants. Journal of Nanomedicine and Nanotechnology 5(5): 1-10.
Penders,
J., Stolzoff, M., Hickey, D.J., Anderson, M. & Webster, T.J. 2017.
Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles. International Journal of Medicine 12:
2457-2468.
Pernodet,
N., Fang, X., Sun, Y., Bakhtina, A., Ramakrishnan, A., Sokolov, J., Ulman, A.
& Rafailovich, M. 2006. Adverse effects of citrate/gold nanoparticles on
human dermal fibroblasts. Small 2(6):
766-777.
Philip,
D. 2010. Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy 77(4): 807-810.
Rajan,
A., Rajan, A.R. & Philip, D.O. 2017. Elettaria cardamomum seed
mediated rapid synthesis of gold nanoparticles and its biological activities. Open Nano 2: 1-8.
Rao, Y., Inwati, G.K. & Singh, M. 2017. Green synthesis
of capped gold nanoparticles and their effect on Gram-positive and
Gram-negative bacteria. Future Science OA 3(4): FSO239.
Said,
D.A., Ali, A.M., Khayyat, M.M., Boustimi, M., Loulou, M. & Seoudi, R. 2019.
A study of the influence of plasmonic resonance of gold nanoparticle doped
PEDOT: PSS on the performance of organic solar cells based on CuPc/C60. Heliyon 5(11): e02675.
Shahzadi,
S., Zafar, N. & Sharif, R. 2018. Antibacterial Activity of Metallic Nanoparticles: Bacterial
Pathogenesis and Antibacterial Control. London: IntechOpen.
Shankar,
S.S., Rai, A., Ahmad, A. & Sastry, M. 2004. Rapid synthesis of Au, Ag, and
bimetallic Au Core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science 275(2): 496-502.
Sulaiman, G.M., Mohammed, W.H., Marzoog, T.R.,
Al-Amiery, A.A.A., Kadhum, A.A.H. & Mohamad, A.B. 2013. Green synthesis,
antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus
chapmaniana leaves extract. Asian Pacific Journal of Tropical
Biomedicine 3(1): 58-63.
Song,
J.Y., Jang, H.K. & Kim, B.S. 2009. Biological synthesis of gold
nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process
BioChemistry 44(10): 1133-1138.
Sykes,
J.E. & Rankin, S.C. 2014. Isolation
and Identification of Aerobic and Anaerobic Bacteria: Canine
and Feline Infectious Diseases. California: Elsevier Inc.
Vijayakumar,
S. & Ganesan, S. 2012. In vitro cytotoxicity assay on gold
nanoparticles with different stabilizing agents. Journal of Nanomaterials 2012: 1-9.
Wagers,
K., Chui, T. & Adem, S. 2014. Effect of pH on the stability of gold
nanoparticles and their application for melanine detection in infant formula. Journal of Applied Chemistry 7(8):
15-20.
Wali,
M., Sajjad, A.S., Sumaira, S., Muhammad, N., Safia, H. & Muhammad, J. 2017.
Green synthesis of gold nanoparticles and their characterizations using plant
extract of Papaver somniferum. Nano Science Nano Technology 11(2): 1-8.
Wang,
Y., Pitto-Barry, A., Habtemariam, A., Romero-Canelon, I., Sadler, P.J. &
Barry, N.P.E. 2016. Nanoparticles of chitosan conjugated to organo-ruthenium
complexes. Inorganic Chemistry Frontier 3(8): 1058-1064.
Ye,
W., Leung, M.F., Xin, J., Kwong, T.L., Lee, D.K.L. & Li, P.J.P. 2005. Novel
core-shell particles with poly (N-Butyl Acrylate) cores and chitosan shells as
an antibacterial coating for textiles. Polymer 46(23): 10538-10543.
Zabetakis,
K., Ghann, W.E., Kumar, S. & Daniel, M.C. 2012. Effect of high gold salt
concentrations on the size and polydispersity of gold nanoparticles prepared by
an extended Turkevich-Frens
Method. Gold Bulletine 45(4):
203-211.
Zhao,
L., Jiang, D., Cai, Y., Ji, X., Xie, R. & Yang, W. 2012. Tuning the size of
gold nanoparticles in the citrate reduction by chloride ions. Nanoscale 4(16): 5071-5076.
Zhou,
Y., Kong, Y., Kundu, S., Cirillo, J.D. & Liang, H. 2012. Antibacterial
activities of gold and silver nanoparticles against Escherichia coli and Bacillus calmette-guérin. Journal of Nanobiotechnology 10(1): 19.
Zhuang,
Y., Liu, L., Wu, X., Tian, Y., Zhou, X., Xu, S., Xie, Z. & Ma, Y. 2018.
Size and shape effect of gold nanoparticles in 'Far‐Field' surface
plasmon resonance. Particle and Particle System Characterization 36(1800077): 1-8.
Zuber,
A., Purdey, M., Schartner, E., Forbes, C., van der Hoek, B., Giles, D., Abell,
A., Monro, T. & Ebendorff-Heidepriem, H. 2016. Detection of gold nanoparticles with different sizes using absorption
and fluorescence based method. Sensors and Actuators B: Chemical 227: 117-127.
*Corresponding
author; email: haliza.katas@ukm.edu.my
|