Sains Malaysiana
49(7)(2020): 1729-1743
http://dx.doi.org/10.17576/jsm-2020-4907-23
Syngas
Production from Rubberwood Biomass in Downdraft Gasifier Combined with Wet
Scrubbing: Investigation of Tar and Solid Residue
(Pengeluaran
Singas daripada Biojisim Kayu Getah dalam Sistem Pengegas Alir Turun Digabungkan
dengan Penggahar Basah: Kajian Tar dan Sisa Pepejal)
SYED HASEEB SULTAN1, ARKOM PALAMANIT2*, KUA-ANAN TECHATO3, MUHAMMAD
AMIN4, KHURSHID AHMED5& ASADULLAH4
1Sustainable Energy Management Program, Faculty of
Environmental Management, Prince of Songkla University, Hat Yai, Songkhla
90110, Thailand
2Interdisciplinary Graduate School of Energy Systems, Prince
of Songkla University, Hat Yai, Songkhla 90110, Thailand
3Environmental Assessment and Technology for Hazardous Waste
Management Research Center, Faculty of Environmental Management, Prince of
Songkla University, Hat Yai, Songkhla 90110, Thailand
4Department of Chemical Engineering, Faculty of Engineering,
BUITEMS, Quetta, Pakistan
5Molecular Biotechnology Laboratory, Department of Industrial
Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla
Province, Thailand
Received: 6 October 2019/Accepted: 12 March 2020
Abstract
Production of synthesis gas by gasification is still
a challenge due to the tar in the synthesis gas (syngas). This tar needs to be
eliminated by appropriate methods before using the syngas as a fuel. Moreover,
the solid residue after gasification also needs to be properly managed or
destroyed. Therefore, the aim of this study was to investigate tar and solid
residue generated by gasification of rubberwood biomass, including rubberwood
chips (RWC), rubberwood pellets (RWP), rubberwood unburned char (UBC), and
their blends, in a downdraft gasifier. Waste vegetable oil (WVO) and water were
used as scrubbing media. Properties of the biomass samples were characterized
by proximate and ultimate analysis, as well as for the higher heating value.
The downdraft gasifier was operated at 850 °C and equivalence ratio (ER) of
0.25. The concentrations of tar in syngas both before and after passing through
the wet scrubber were determined. Chemical compounds in the tar were analysed
by GC-MS. The solid residue remaining after gasification was separated into
biochar and ash. The biochar was characterized by CHNS/O analyser, FTIR, SEM,
and for the iodine number. The compounds in ash were determined by XRF. The
results show that biomass type and scrubbing media affected the tar removal
efficiency. Scrubbing syngas with WVO had better tar removal efficiency than
scrubbing with water. The highest tar removal efficiency with WVO was 82.16%.
The tar sample consisted of complex compounds as indicated by GC-MS, and these
compounds depended on type of biomass feedstock. The solid residue obtained
after gasification process contained biochar (unburned carbon) and ash. Some
biochars can be used as solid fuels, depending on carbon content and energy
content. The biochar also had a highly porous structure based on SEM imaging,
and a high iodine number (930-1134 mg/g). The biochar contained the functional
groups OH, C-O, and C-H, as indicated by FTIR. CaO, K2O, SiO2,
and MgO were the major components in ash. The spent WVO, biochar, and ash need
to be properly managed or utilized for sustainable gasification operations, and
these results support that pursuit.
Keywords: Biomass; gasification; rubberwood
biomass; syngas cleaning; tar removal
ABSTRAK
Penghasilan gas sintesis melalui proses pengegasan
masih mencabar kerana kehadiran tar dalam gas sintesis (singas). Tar ini perlu
disingkirkan melalui kaedah yang bersesuaian sebelum singas digunakan sebagai
bahan api. Selain itu, sisa pepejal yang terhasil selepas proses pengegasan
juga perlu diuruskan atau dimusnahkan dengan betul. Oleh demikian, tujuan
kajian ini adalah untuk mengkaji tar dan sisa pepejal yang terhasil daripada
proses pengegasan biojisim kayu getah, termasuk serpihan kayu getah, pelet kayu
getah, arang kayu getah dan campuran kesemua bahan dalam pengegas alir turun.
Minyak sayur terpakai dan air telah digunakan sebagai media penggahar.
Ciri-ciri sampel biojisim telah dikaji melalui analisis proksimat dan muktamad,
dan juga nilai pemanasan tinggi. Sistem pengegas alir turun telah beroperasi
pada suhu 850 °C and nisbah kesetaraan 0.25. Kandungan tar dalam singas sebelum
dan selepas melalui media penggahar telah diukur. Sebatian kimia dalam sampel
tar telah dianalisis menggunakan GC-MS. Sisa baki pepejal selepas proses
pengegasan telah dipisah daripada arang bio dan abu. Arang bio telah dicirikan
melalui alat CHNS/O, FTIR, SEM, dan nombor iodin. Sebatian dalam abu dianalisis
melalui XRF. Keputusan yang diperoleh menunjukkan bahawa jenis biojisim dan
media penggahar telah mempengaruhi keberkesanan penyingkiran tar. Penggaharan
singas menggunakan minyak sayur terpakai menunjukkan keberkesanan yang lebih
baik berbanding dengan air daripada segi penyingkiran tar. Setinggi 82.16%
penyingkiran tar telah tercapai menggunakan minyak sayur terpakai. Sampel tar
mengandungi sebatian yang kompleks seperti yang ditunjukkan oleh GC-MS dan
komposisi sebatian ini bergantung kepada jenis biojisim. Sisa pepejal terhasil
selepas proses pengegasan mengandungi arang bio (karbon tak terbakar) dan abu.
Sesetengah arang bio boleh digunakan sebagai bahan api pepejal yang bergantung
kepada kandungan karbon dan tenaga. Arang bio yang terhasil juga mempunyai
struktur berongga berdasarkan imej SEM dan nilai iodin yang tinggi (930-1134
mg/g). Arang bio yang terhasil mengandungi kumpulan berfungsi OH, C-O dan C-H
seperti yang ditunjukkan oleh FTIR. CaO, K2O, SiO2 dan
MgO adalah kandungan utama dalam abu. Minyak sayur terpakai, arang bio dan abu
yang telah digunakan perlu diuruskan dengan betul untuk operasi pengegasan yang
mampan dan hasil ini menyokong usaha tersebut.
Kata kunci: Biojisim; biojisim kayu getah; pembersihan singas; pembuangan tar; pengegasan
REFERENCES
Abdullahi, N., Sulaiman, F. & Safana, A.A. 2017. Bio-oil and biochar
derived from the pyrolysis of palm kernel shell for briquette. Sains Malaysiana 46(12): 2441-2445.
Abdoulmoumine, N., Adhikari, S.,
Kulkarni, A. & Chattanathan, S. 2015. A review on biomass gasification
syngas cleanup. Applied Energy 155: 294-307.
Ahmad, N.A. & Zainal, Z.A.
2016. Performance and chemical composition of waste palm cooking oil as
scrubbing medium for tar removal from biomass producer gas. Journal of
Natural Gas Science and Engineering 32: 256-261.
Amin, M., Chetpattananondh, P. & Ratanawilai, S. 2019. Application
of extracted marine Chlorella sp. residue for bio-oil production as the
biomass feedstock and microwave absorber. Energy Conversion and Management 195: 819-829.
Antonopoulos, I.S.,
Karagiannidis, A., Gkouletsos, A. & Perkoulidis, G. 2012. Modelling of a
downdraft gasifier fed by agricultural residues. Waste Management 32: 710-718.
Anwar, Z., Gulfraz, M. & Irshad, M. 2014. Agro-industrial
lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Sciences 7(2):
163-173.
Awais, M., Li, W., Arshad, A., Haydar, Z., Yaqoob, N. & Hussain, S.
2018. Evaluating removal of tar contents in syngas produced from downdraft
biomass gasification system. International Journal of Green Energy 15(12): 724-731.
Bamdad, H., Hawboldt, K. & MacQuarrie, S. 2018. A review on common
adsorbents for acid gases removal: Focus on biochar. Renewable and
Sustainable Energy Reviews 81: 1705-1720.
Basu, P. 2010. Biomass Gasification and Pyrolysis: Practical Design and Theory. 1st ed. New York:
Academic Press.
Bensidhom, G.,
Hassen-Trabelsia, A.B., Alper,
K., Sghairoun, M., Zaafouri, K. & Trabelsi, I. 2018.
Pyrolysis of date palm waste in a fixed-bed reactor: Characterization of
pyrolytic products. Bioresource
Technology 247: 363-369.
Bhoi, P.R., Huhnke, R.L., Kumar,
A., Payton, M.E., Patil, K.N. & Whiteley, J.R. 2015. Vegetable oil as a
solvent for removing producer gas tar compounds. Fuel Processing Technology 133: 97-104.
Brammer, I.G. &
Bridgwater, A.V. 2002. The influence of feed stock drying on the performance
and economics of a biomass gasifier-engine CHP System. Biomass and Bioenergy 22(4): 271-281.
Chen,
M., Yu, D. & Wei, Y. 2015. Evaluation on ash
fusion behaviour of eucalyptus bark/lignite blends. Powder Technology 286: 39-47.
Corella, J., Caballero, M.A.,
Aznar, M.P. & Brage, C. 2003. Two advanced models for the kinetics of the
variation of the tar composition in its catalytic elimination in biomass
gasification. Industrial & Engineering Chemistry Research 42(13):
3001-3011.
Demirbaş, A. 2005. Thermochemical conversion of biomass to liquid
products in the aqueous medium. Energy
Source 27(13): 1235-1243.
Di Gregorio, F., Santoro, D.
& Arena, U. 2014. The effect of ash composition on gasification of poultry
wastes in a fluidized bed reactor. Waste Management & Research 32(4): 323-330.
Farzad, S., Mandegari, M.A. &
Görgens, J.F. 2016. A critical review on biomass gasification, co-gasification,
and their environmental assessments. Biofuel Research Journal 12:
483-495.
Fuentes-Cano,
D., Von Berg, L., Diéguez-Alonso, A., Scharler, R., Gómez-Barea, A. &
Anca-Couce, A. 2020. Tar conversion of biomass syngas in a downstream char bed. Fuel Processing Technology 199: 106271.
García, R., Pizarro, C., Lavín, A.G. & Bueno, J.L. 2013. Biomass
proximate analysis using thermogravimetry. Bioresource Technology 139: 1-4.
Guo, Y. & Bustin, R. 1998.
FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: Implications for
studies of inertinite in coals. International Journal of Coal Geology 37(1-2): 29-53.
Han, J. & Kim, H. 2008. The
reduction and control technology of tar during biomass gasification/pyrolysis: An overview. Renewable
and Sustainable Energy Reviews 12(2): 397-416.
Hossain, M.K., Strezov, V., Chan,
K.Y., Ziolkowski, A. & Nelson, P.F. 2011. Influence of pyrolysis
temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management 92(1): 223-228.
Islam, M.W. 2020. A review of
dolomite catalyst for biomass gasification tar removal. Fuel 267:
117095.
Jadhav, A., Ahmed, I., Baloch,
A.G., Jadhav, H., Nizamuddin, S., Siddiqui, M.T.H. & Mubarak, N.M. 2019.
Utilization of oil palm fronds for bio-oil and bio-char production using
hydrothermal liquefaction technology. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-019-00517-y.
James, A.K., Thring, R.W., Helle,
S. & Ghuman, H.S. 2012. Ash management review-Applications of biomass bottom
ash. Energies 5(10): 3856-3873.
Jia, S., Ning, S., Ying, H., Sun,
Y., Xu, W. & Yin, H. 2017. High quality syngas production from catalytic
gasification of woodchip char. Energy Conversion and Management 151: 457-464.
Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M.A. &
Sonoki, T. 2014. Physical and chemical characterization of biochars derived
from different agricultural residues. Biogeosciences 11(23): 6613-6621.
Johari,
A., Mat, R., Alias, H., Hashim, H., Hassim, M.H., Zakaria, Z.Y. &
Rozainee, M. 2014. Combustion
characteristics of refuse derived fuel (rdf) in
a fluidized bed combustor. Sains
Malaysiana 43(1): 103-109.
Kaewluan, S. & Pipatmanomai,
S. 2011a. Gasification of high moisture rubber woodchip with rubber waste in a
bubbling fluidized bed. Fuel Processing Technology 92(3): 671-677.
Kaewluan, S. & Pipatmanomai,
S. 2011b. Potential of synthesis gas production from rubber wood chip gasification
in a bubbling fluidised bed gasifier. Energy Conversion and Management 52(1): 75-84.
Kate, G.U. & Chaurasia, A.S. 2018. Gasification of rice husk in
two-stage gasifier to produce syngas, silica and activated carbon. Energy
Sources, Part A: Recovery, Utilization and Environmental Effects 40(4): 466-471.
Kirubakaran, V., Sivaramakrishnan, V., Nalini, R., Sekar, T.,
Premalatha, M. & Subramanian, P. 2009. A review on gasification of biomass. Renewable and Sustainable Energy Reviews 13(1): 179-186.
Khongphakdi, P.,
Palamanit, A., Phusunti, N., Tirawanichakul, Y. & Shrivastava, P. 2020. Evaluation of oil palm biomass
potential for bio-oil production via pyrolysis processes. International Journal of
Integrated Engineering 11(10): 45-52.
Ku, X., Jin, H. & Lin, J.
2017. Comparison of gasification performances between raw and torrefied
biomasses in an air-blown fluidized-bed gasifier. Chemical Engineering
Science 168: 235-249.
Kumar, P., Barrett, D.M., Delwiche, M.J. & Stroeve, P. 2009. Methods
for pretreatment of lignocellulosic biomass for efficient hydrolysis and
biofuel production. Industrial and
Engineering Chemistry Research 48(8): 3713-3729.
Liang, M., Zhang, K., Lei, P.,
Wang, B., Shu, C.M. & Li, B. 2019. Fuel properties and combustion kinetics of
hydrochar derived from co-hydrothermal carbonization of tobacco residues and
graphene oxide. Biomass Conversion and Biorefinery 10:
189-201.
Li, C. & Suzuki, K. 2009. Tar
property, analysis, reforming mechanism and model for biomass gasification-an
overview. Renewable and Sustainable Energy Reviews 13(3): 594-604.
Li,
F., Xu, M., Wang, T., Fang, Y. & Ma, M. 2015. An investigation on the
fusibility characteristics of low-rank coals and biomass mixtures. Fuel 158:
884-890.
Lopez, G., Artetxe, M., Amutio,
M., Alvarez, J., Bilbao, J. & Olazar, M. 2018. Recent advances in the
gasification of waste plastics. A critical overview. Renewable and
Sustainable Energy Reviews 82: 576-596.
Mckendry, P. 2002a. Energy
production from biomass (part 2): Conversion technologies. Bioresource Technology 83(1): 47-54.
McKendry, P. 2002b. Energy
production from biomass (part 3): Gasification technologies. Bioresource Technology 83(1): 55-63.
Milne, T.A., Abatzoglou, N. & Evans, R. 1998. Biomass Gasifier “tars”: Their Nature, Formation,
and Conversion, Colorado (US).
https://www.nrel.gov/docs/fy99osti/25357.pdf. Accessed on 4 March 2020.
Mishra,
R.K. & Mohanty, K. 2018. Pyrolysis kinetics and thermal behavior of waste
sawdust biomass using thermogravimetric analysis. Bioresource Technology 251: 63-74.
Molino, A., Chianese, S. &
Musmarra, D. 2016. Biomass gasification technology: The state of the art
overview. Journal of Energy Chemistry 25(1): 10-25.
Monir, M.U., Khatun, F., Abd
Aziz, A. & Vo, D.V.N. 2020. Thermal treatment of tar generated during
co-gasification of coconut shell and charcoal. Journal of Cleaner Production 256: 120305.
Müller-Langer,
F. & Kaltschmitt, M. 2015. Biofuels from lignocellulosic biomass - a
multi-criteria approach for comparing overall concepts. Biomass Conversion
and Biorefinery 5: 43-61.
Nakamura, S., Siriwat, U.,
Yoshikawa, K. & Kitano, S. 2015. Development of tar removal technologies
for biomass gasification using the by-products. Energy Procedia 75: 208-213.
Nakamura, S., Kitano, S. &
Yoshikawa, K. 2016. Biomass gasification process with the tar removal
technologies utilizing bio-oil scrubber and char bed. Applied Energy 170: 186-192.
Nanda, S.,
Mohammad, J., Reddy, S.N., Kozinski, J.A. & Dalai, A.K. 2014.
Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass
Conversion and Biorefinery 4(2): 157-191.
Nunalapati, D., Gupta, R.,
Moghtaderi, B. & Wall, T.F. 2007. Assessing slagging and fouling during
biomass combustion: A thermodynamic approach allowing for alkali/ash reactions. Fuel
Processing Technology 88(11-12): 1044-1052.
Nunes, L.J.R., Matias, J.C.O.
& Catalão, J.P.S. 2016. Biomass combustion systems: A review on the
physical and chemical properties of the ashes. Renewable and Sustainable
Energy Reviews 53: 235-242.
Office of Agricultural Economics. 2018. Agricultural Statistics of Thailand in 2018. Office of
Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. http://www.oae.go.th/assets/portals/1/ebookcategory/27_yearbook2561/. Accessed on 20 June 2019.
Paethanom, A., Nakahara, S., Kobayashi, M., Prawisudha, P. &
Yoshikawa, K. 2012. Performance of tar removal by absorption and adsorption for
biomass gasification. Fuel Processing Technology 104: 144-154.
Paethanom, A., Bartocci, P.,
Alessandro, B.D., Amico, M.D., Testarmata, F., Moriconi, N., Slopiecka, K.,
Yoshikawa, K. & Fantozzi, F. 2013. A low-cost pyrogas cleaning system for
power generation: Scaling up from lab to pilot. Apply Energy 111: 1080-1088.
Palamanit, A.,
Khongphakdi, P., Tirawanichakul, Y. & Phusunti, N. 2019. Investigation of
yields and qualities of pyrolysis products obtained from oil palm biomass using
an agitated bed pyrolysis reactor. Biofuel Research Journal 24:
1065-1079.
Pereira, E.G., da Silva, J.N., de
Oliveira, J.L. & Machado, C.S. 2012. Sustainable energy: A review of
gasification technologies. Renewable and Sustainable Energy Reviews 16(7): 4753-4762.
Phuphuakrat, T., Namioka, T. & Yoshikawa, K. 2011. Absorptive
removal of biomass tar using water and oily materials. Bioresource
Technology 102(2): 543-549.
Plante, L.,
Sheehan, N.P., Bier, P., Murray, K., Quell, K., Ouellette, C. & Martinez,
E. 2019. Bioenergy from biofuel residues and waste. Water Environment
Federation 91(10): 1199-1204.
Plis, P. & Wilk, R.K. 2011.
Theoretical and experimental investigation of biomass gasification process in a
fixed bed gasifier. Energy 36(6): 3838-3845.
Rajendran, K.,
Drielak, E., Varma, V.S., Muthusamy, S. & Kumar, G. 2017. Updates on the
pretreatment of lignocellulosic feedstocks for bioenergy production - A review. Biomass
Conversion and Biorefinery 8(2): 471-483.
Rasmussen, N.B.K. & Aryal, N.
2020. Syngas production using straw pellet gasification in fluidized bed
allothermal reactor under different temperature conditions. Fuel 263:
116706.
Rubber Authority
of Thailand. 2018. Academic Information of Rubber in 2018. https://km.raot.co.th/book/read-product/230. Accessed on 20 June 2019.
Saad,
M.J., Chia, C.H., Zakaria, S., Sajab, M.S., Misran, S., Rahman, M.H.A. & Chin, S.X. 2019. Physical and chemical
properties of the rice straw activated carbon produced from carbonization and
koh activation processes. Sains
Malaysiana 48(2): 385-391.
Schuster, G.L., Loffler, G.,
Weigl, K. & Hofbauer, H. 2001. Biomass steam gasification - An extensive
parametric modeling study. Bioresource Technology 77(1): 71-79.
Seggiani, M., Vitolo, S.,
Puccini, M. & Bellini, A. 2012. Co-gasification of sewage sludge in an
updraft gasifier. Fuel 93: 486-491.
Shen, Y. & Yoshikawa, K.
2013. Recent progresses in catalytic tar elimination during biomass
gasification or pyrolysis-a review. Renewable and Sustainable Energy Reviews 21: 371-392.
Shrivastava, P., Khongphakdi, P.,
Palamanit, A., Kumar, A. & Tekasakul, P. 2020. Investigation of physicochemical
properties of oil palm biomass for evaluating potential of biofuels production
via pyrolysis processes. Biomass Conversion
and Biorefinery. https://doi.org/10.1007/s13399-019-00596-x.
Sikarwar, V.S., Zhao, M.,
Fennell, P.S., Shah, N. & Anthony, E.J. 2017. Progress in biofuel
production from gasification. Progress in Energy and Combustion Science 61: 189-248.
Stevens, D.J. 2001. Hot gas conditioning: Recent
progress with larger-scale biomass gasification systems. National
Renewable Energy Laboratory. https://www.nrel.gov/docs/fy01osti/29952.pdf.
Susastriawan, A.A.P., Saptoadi,
H. & Purnomo. 2017. Small-scale downdraft gasifiers for biomass
gasification: A review. Renewable and Sustainable Energy Reviews 76: 989-1003.
Tanger, P., Field, J.L., Jahn,
C.E., Defoort, M.W. & Leach, J.E. 2013. Biomass for thermochemical conversion: Targets and challenges. Frontiers in Plant Science 4: 1-20.
Tarnpradab, T., Unyaphan, S., Takahashi, F. & Yoshikawa, K. 2016.
Tar removal capacity of waste cooking oil absorption and waste char adsorption
for rice husk gasification. Biofuels 7(4): 401-412.
Thapa, S., Bhoi, P.R., Kumar, A.
& Huhnke, R.L. 2017. Effects of syngas cooling and biomass filter medium on
tar removal. Energies 10(3): 349.
Tursi, A. 2019. A review on
biomass: Importance, chemistry, classification, and conversion. Biofuel Research
Journal 6(2): 962-979.
Unyaphan, S., Tarnpradab, T.,
Takahashi, F. & Yoshikawa, K. 2017. An investigation of low cost and
effective tar removal techniques by venturi scrubber producing syngas
microbubbles and absorbent regeneration for biomass gasification. Energy
Procedia 105: 406-412.
Valderrama Rios, M.L., González, A.M., Lora, E.E.S. & Almazán del
Olmo, O.A. 2018. Reduction of tar generated during biomass gasification: A review. Biomass and Bioenergy 108:
345-370.
Vecchione, L., Cossio, F. &
Longo, L. 2016. Comparison of different systems for tar removal for renewable
energy derivation from biomass gasification. Contemporary Engineering
Sciences 9(9): 413-423.
Watson, J., Zhang, Y., Si, B.,
Chen, W.T. & de Souza, R. 2018. Gasification of biowaste: A critical review
and outlooks. Renewable and Sustainable Energy Reviews 83: 1-17.
Werther, J., Saenger, M., Hartge, E.U., Ogada, T. & Siagi, Z. 2000.
Combustion of agricultural residues. Progress in Energy and Combustion
Science 26(1): 1-27.
Widjaya, E.R.,
Chen, G., Bowtell, L. & Hills, C. 2018. Gasification of
non-woody biomass: A literature review. Renewable and Sustainable Energy
Reviews 89: 184-193.
Yao, X., Zhou, H., Xu, K., Xu, Q.
& Li, L. 2020. Investigation on the fusion characterization and melting
kinetics of ashes from co-firing of anthracite and pine sawdust. Renewable
Energy 145: 835-846.
Yokoyama, S.Y., Ogi, T. & Nalampoon, A. 2000. Biomass energy
potential in Thailand. Biomass and Bioenergy 18(5): 405-410.
Yu, L.Y., Wang, L.W. & Li, P.S. 2014. Study on prediction models of
biomass ash softening temperature based on ash composition. Journal of the
Energy Institute 87(3): 215-219.
Zhu, Y., Niu, Y., Tan, H. &
Wang, X. 2014. Short review on the origin and countermeasure of biomass slagging
in grate furnace. Frontiers in Energy Research: Bioenergy and Biofuel 2(7): 1-10.
*Corresponding
author; email: arkom.p@psu.ac.th
|