Sains Malaysiana 49(7)(2020): 1755-1764

http://dx.doi.org/10.17576/jsm-2020-4907-25

 

Suatu Kelas Kaedah Optimum Bak Steffensen Bebas Terbitan untuk Punca Berganda
(A Class of Steffensen-Like Optimal Derivative-Free Method for Multiple Roots)

 

SYAHMI AFANDI SARIMAN & ISHAK HASHIM*

 

Jabatan Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 24 March 2020/Accepted: 10 April 2020

 

ABSTRAK

Objektif utama makalah ini adalah untuk mencari punca berganda bagi persamaan tak linear. Kaedah lelaran tiga tahap diubah suai menjadi bebas terbitan yang mengekalkan peringkat penumpuan optimum lapan. Skema lelaran bebas terbitan dibangunkan berdasarkan kaedah bak Steffensen dan konsep beza terhingga. Kaedah yang diubah suai ini selaras dengan penumpuan optimum mengikut konjektur Kung Traub yang dibuktikan melalui analisis penumpuan. Skema lelaran ini dapat bersaing dengan kaedah lelaran sedia ada daripada segi kebebasan terbitan. Indeks keberkesanan telah mencapai nilai  dan lebih baik daripada kaedah Newton klasik, . Beberapa ujian berangka dilakukan dalam menentukan keberkesanan skema lelaran yang dibangunkan bagi mencari punca berganda mahupun punca mudah.

Kata kunci: Bebas terbitan; kaedah lelaran; penumpuan optimum; persamaan tak linear; punca berganda

 

ABSTRACT

The main objective of this paper was to find multiple roots for nonlinear equations. The three-step iteration method is modified to be derivative free which maintains an optimum convergence of eight. The derivative-free iteration scheme was developed based on the Steffensen-like method and finite difference concept. The modified method satisfies the optimal convergence of Kung-Traub’s conjectures as shown in the convergence analysis. The iteration scheme can compete with the existing iteration methods in terms of free derivatives. The efficiency index has reached the value  and is better than the classical Newton method, . Numerical experiments have been done to determine the effectiveness of the iteration scheme in finding multiple roots and also simple roots.

Keywords: Derivative-free; iterative method; multiple roots; nonlinear equation; optimal convergence

 

REFERENCES

Akram, S., Zafar, F. & Yasmin, N. 2019. An optimal eighth-order family of iterative methods for multiple roots. Mathematics 7(8): 672.

Behl, R., González, D., Maroju, P. & Motsa, S.S. 2018. An optimal and efficient general eighth-order derivative free scheme for simple roots. Journal of Computational and Applied Mathematics 330: 666-675.

Behl, R., Martínez, E., Cevallos, F. & Alarcón, D. 2019a. A higher order Chebyshev-Halley-type family of iterative methods for multiple roots. Mathematics 7(4): 339.

Behl, R., Salimi, M., Ferrara, M., Sharifi, S. & Alharbi, S.K. 2019b. Some real-life applications of a newly constructed derivative free iterative scheme. Symmetry 11(2): 239.

Cordero, A. & Torregrosa, J.R. 2016. On the design of optimal iterative methods for solving nonlinear equations. In Advances in Iterative Methods for Nonlinear Equations. Cham: Springer. hlm. 79-111.

Cordero, A. & Torregrosa, J.R. 2015. Low-complexity root-finding iteration functions with no derivatives of any order of convergence. Journal of Computational and Applied Mathematics 275: 502-515.

Cordero, A. & Torregrosa, J.R. 2007. Variants of Newton’s method using fifth-order quadrature formulas. Applied Mathematics and Computation 190(1): 686-698.

Cordero, A., Hueso, J.L., Martínez, E. & Torregrosa, J.R. 2013. A new technique to obtain derivative-free optimal iterative methods for solving nonlinear equations. Journal of Computational and Applied Mathematics 252: 95-102.

Ibrahim, Z.B., Zainuddin, N., Othman, K.I., Suleiman, M. & Zawawi, I.S.M. 2019. Variable order block method for solving second order ordinary differential equations. Sains Malaysiana 48(8): 1761-1769.

Ismail, F., Hussain, K. & Senu, N. 2016. A sixth-order RKFD method with four-stage for directly solving special fourth-order ODEs. Sains Malaysiana 45(11): 1747-1754.

Jikantoro, Y.D., Ismail, F. & Senu, N. 2015. Zero-dissipative trigonometrically fitted hybrid method for numerical solution of oscillatory problems. Sains Malaysiana 44(3): 473-482.  

Junjua, M.U.D., Zafar, F. & Yasmin, N. 2019. Optimal derivative-free root finding methods based on inverse interpolation. Mathematics 7(2): 164.

Kung, H.T. & Traub, J.F. 1974. Optimal order of one-point and multipoint iteration. Journal of the ACM 21(4): 643-651.

Li, J., Wang, X. & Madhu, K. 2019. Higher-order derivative-free iterative methods for solving nonlinear equations and their basins of attraction. Mathematics 7(11): 1052.

Ostrowski, A.M. 1966. Solution of Equations and Systems of Equations: Pure and Applied Mathematics: A Series of Monographs and Textbooks. Massachusettes: Academic Press.

Parvaneh, F. & Ghanbari, B. 2017. A third order method for solving nonlinear equations. Chiang Mai Journal of Science 44(3): 1154-1162.

Petković, M.S. & Petković, L.D. 2019. Construction and efficiency of multipoint root-ratio methods for finding multiple zeros. Journal of Computational and Applied Mathematics 351: 54-65.

Saburov, M. & Khameini Ahmad, M.A. 2015. The number of solutions of cubic equations over . Sains Malaysianac 44(5): 765-769

Schröder, E. 1870. Über unendlich viele Algorithmen zur Auflösung der Gleichungen Mathematische Annalen 2(2): 317-365.

Sharma, J.R., Kumar, D. & Argyros, I.K. 2019. An efficient class of Traub-Steffensen-like seventh order multiple-root solvers with applications. Symmetry 11(4): 518.

Steffensen, J.F. 1933. Remarks on iteration. Scandinavian Actuarial Journal 1933(1): 64-72.

Tao, Y. & Madhu, K. 2019. Optimal fourth, eighth and sixteenth order methods by using divided difference techniques and their basins of attraction and its application. Mathematics 7(4): 322.

Zafar, F., Cordero, A. & Torregrosa, J.R. 2018. An efficient family of optimal eighth-order multiple root finders. Mathematics 6(12): 310.

 

*Corresponding author; email: ishak_h@ukm.edu.my

 

 

 

previous