Sains Malaysiana 49(7)(2020): 1755-1764
http://dx.doi.org/10.17576/jsm-2020-4907-25
Suatu Kelas Kaedah Optimum Bak Steffensen Bebas Terbitan untuk Punca
Berganda
(A Class of Steffensen-Like
Optimal Derivative-Free Method for Multiple Roots)
SYAHMI AFANDI SARIMAN & ISHAK HASHIM*
Jabatan
Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 24 March 2020/Accepted: 10 April 2020
ABSTRAK
Objektif utama makalah ini adalah untuk mencari punca berganda bagi
persamaan tak linear. Kaedah lelaran tiga tahap diubah suai menjadi bebas
terbitan yang mengekalkan peringkat penumpuan optimum lapan. Skema lelaran
bebas terbitan dibangunkan berdasarkan kaedah bak Steffensen dan konsep beza terhingga.
Kaedah yang diubah suai ini selaras dengan penumpuan optimum mengikut konjektur
Kung Traub yang dibuktikan melalui analisis penumpuan. Skema lelaran ini dapat
bersaing dengan kaedah lelaran sedia ada daripada segi kebebasan terbitan.
Indeks keberkesanan telah mencapai nilai
dan lebih baik
daripada kaedah Newton klasik,
. Beberapa ujian berangka dilakukan dalam menentukan
keberkesanan skema lelaran yang dibangunkan bagi mencari punca berganda mahupun
punca mudah.
Kata kunci: Bebas terbitan; kaedah lelaran; penumpuan optimum; persamaan
tak linear; punca berganda
ABSTRACT
The main objective of this paper was to find multiple roots for
nonlinear equations. The three-step iteration method is modified to be
derivative free which maintains an optimum convergence of eight. The
derivative-free iteration scheme was developed based on the Steffensen-like
method and finite difference concept. The modified method satisfies the optimal
convergence of Kung-Traub’s conjectures as shown in the convergence analysis.
The iteration scheme can compete with the existing iteration methods in terms
of free derivatives. The efficiency index has reached the value
and is better than the
classical Newton method,
. Numerical experiments have been done to determine the
effectiveness of the iteration scheme in finding multiple roots and also simple
roots.
Keywords:
Derivative-free; iterative method; multiple roots; nonlinear equation; optimal
convergence
REFERENCES
Akram,
S., Zafar, F. & Yasmin, N. 2019. An optimal eighth-order family of
iterative methods for multiple roots. Mathematics 7(8): 672.
Behl, R., González, D., Maroju, P. & Motsa, S.S. 2018. An optimal and
efficient general eighth-order derivative free scheme for simple roots. Journal
of Computational and Applied Mathematics 330: 666-675.
Behl, R., Martínez, E., Cevallos, F. & Alarcón, D. 2019a. A higher
order Chebyshev-Halley-type family of iterative methods for multiple roots. Mathematics 7(4): 339.
Behl, R., Salimi, M., Ferrara, M., Sharifi, S. & Alharbi, S.K. 2019b.
Some real-life applications of a newly constructed derivative free iterative
scheme. Symmetry 11(2): 239.
Cordero, A. & Torregrosa, J.R. 2016. On the design of optimal
iterative methods for solving nonlinear equations. In Advances
in Iterative Methods for Nonlinear Equations. Cham: Springer. hlm.
79-111.
Cordero, A. & Torregrosa, J.R. 2015. Low-complexity root-finding
iteration functions with no derivatives of any order of convergence. Journal
of Computational and Applied Mathematics 275: 502-515.
Cordero, A. & Torregrosa, J.R. 2007. Variants of Newton’s method using
fifth-order quadrature formulas. Applied Mathematics and Computation 190(1): 686-698.
Cordero, A., Hueso, J.L., Martínez, E. & Torregrosa, J.R. 2013. A new
technique to obtain derivative-free optimal iterative methods for solving
nonlinear equations. Journal of Computational and Applied Mathematics 252: 95-102.
Ibrahim, Z.B., Zainuddin, N., Othman, K.I., Suleiman, M. & Zawawi,
I.S.M. 2019. Variable order block method for
solving second order ordinary differential equations. Sains Malaysiana 48(8): 1761-1769.
Ismail, F., Hussain, K. & Senu, N. 2016. A sixth-order RKFD method with four-stage for directly solving special
fourth-order ODEs. Sains Malaysiana 45(11):
1747-1754.
Jikantoro, Y.D., Ismail, F. & Senu, N. 2015.
Zero-dissipative trigonometrically fitted hybrid method for numerical solution
of oscillatory problems. Sains Malaysiana 44(3): 473-482.
Junjua, M.U.D., Zafar, F. & Yasmin, N. 2019. Optimal derivative-free
root finding methods based on inverse interpolation. Mathematics 7(2):
164.
Kung, H.T. & Traub, J.F. 1974. Optimal order of one-point and
multipoint iteration. Journal of the ACM 21(4): 643-651.
Li, J., Wang, X. & Madhu, K. 2019. Higher-order derivative-free
iterative methods for solving nonlinear equations and their basins of attraction. Mathematics 7(11): 1052.
Ostrowski,
A.M. 1966. Solution of Equations and Systems of Equations: Pure and Applied
Mathematics: A Series of Monographs and Textbooks. Massachusettes: Academic Press.
Parvaneh, F. & Ghanbari, B. 2017. A third order method for solving
nonlinear equations. Chiang Mai Journal of Science 44(3): 1154-1162.
Petković, M.S. & Petković, L.D. 2019. Construction and
efficiency of multipoint root-ratio methods for finding multiple zeros. Journal
of Computational and Applied Mathematics 351: 54-65.
Saburov, M. & Khameini Ahmad, M.A. 2015. The number of solutions of cubic equations over . Sains Malaysianac 44(5): 765-769
Schröder, E.
1870. Über unendlich viele Algorithmen zur Auflösung der Gleichungen Mathematische Annalen 2(2): 317-365.
Sharma, J.R., Kumar, D. & Argyros, I.K. 2019. An efficient class of
Traub-Steffensen-like seventh order multiple-root solvers with applications. Symmetry 11(4): 518.
Steffensen, J.F. 1933. Remarks on iteration. Scandinavian Actuarial
Journal 1933(1): 64-72.
Tao, Y. & Madhu, K. 2019. Optimal fourth, eighth and sixteenth order
methods by using divided difference techniques and their basins of attraction
and its application. Mathematics 7(4): 322.
Zafar, F., Cordero, A. & Torregrosa, J.R. 2018. An efficient family of
optimal eighth-order multiple root finders. Mathematics 6(12): 310.
*Corresponding author;
email: ishak_h@ukm.edu.my
|