Sains Malaysiana 50(8)(2021): 2207-2218

http://doi.org/10.17576/jsm-2021-5008-06

 

 Effects of Different Drying Methods and Solvents on Biological Activities of Curcuma aeruginosa Leaves Extract

(Kesan Kaedah Pengeringan dan Pelarut Berbeza pada Aktiviti Biologi Ekstrak Daun Curcuma aeruginosa)

 

WAN NAJIYAH HANUN WAN NASIR1, NURUL NAJIHA AIN IBRAHIM1, WOON KUO HAO1, AZLIANA ABU BAKAR SAJAK3, NOOR-SOFFALINA SOFIAN-SENG1,2, WAN AIDA WAN MUSTAPHA1,2 & HAFEEDZA ABDUL RAHMAN1,2*

 

1Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 3 March 2020/Accepted: 29 December 2020

 

ABSTRACT

Curcuma aeruginosa Roxb. is one of the plants from the Zingiberaceae family which the rhizome has been used for medicinal purposes. However, the biological properties of the leaves have not been fully explored. Therefore, this study was conducted to evaluate the effects of different drying methods and solvents on total phenolic content, antioxidant and anti-hyperglycemic activities of C. aeruginosa leaf extract. Samples were dried by oven drying (OD) and freeze drying (FD), and then extracted using different ratios of ethanol:water (100:0, 50:50 and 0:100). The amount of phenolic content (TPC) was determined using a spectrophotometer. Antioxidant activity was tested using the Free Radical Scavenging (DPPH) test and the Ferric Reducing Antioxidant Power assay (FRAP), while the anti-hyperglycemic test was evaluated by determining the percentage of α-glucosidase inhibition. The results showed that FD at 100:0 and 50:50 concentrations had the highest phenolic content (30.88 and 33.06 mg GAE/g extract, respectively) and highest antioxidant activity value (38.24 and 42.46 mg TEAC/g extract, respectively). For DPPH, FD at 50:50 showed the highest inhibition of 71.48% compared to other extracts. Whereas FD at 100:0, 50:50 and 0:100 showed the highest α-glucosidase inhibition of 25.65, 30.78 and 27.65%, respectively. However, compared to Quercetin, the extract showed mild anti-hyperglycemic activity. The results indicated that FD is the best method of drying while 50:50 showed as the best solvents. Positive correlation between TPC with antioxidant and anti-hyperglycemic activities showed that C. aeruginosa leaf has potential as a source of natural antioxidant with the presence of phenolic compounds.

Keywords: Anti-hyperglycemic; antioxidant; freeze drying; oven drying; phenolic

 

ABSTRAK

Curcuma aeruginosa Roxb. merupakan tumbuhan daripada famili Zingiberaceae yang mana rizomnya telah digunakan secara tradisi untuk tujuan perubatan. Namun begitu, aktiviti biologi daripada bahagian daun masih belum diterokai secara meluas. Oleh itu, penyelidikan ini dijalankan untuk mengkaji kesan kaedah pengeringan dan penggunaan nisbah pelarut yang berbeza terhadap jumlah kandungan fenol, aktiviti antioksidan dan anti-hiperglisemik ekstrak daun C. aeruginosa. Pengeringan ketuhar (PK) dan pengeringan sejuk beku (PB) telah digunakan untuk mengeringkan daun dan kemudiannya diekstrak menggunakan etanol:air dengan nisbah berbeza (100:0, 50:50 dan 0:100). Spektrofotometer telah digunakan untuk menentukan jumlah kandungan fenol (TPC) pada ekstrak. Aktiviti antioksidan pula telah diuji dengan menggunakan ujian Pemerangkapan Radikal Bebas (DPPH) dan ujian Penurunan Ferik (FRAP), manakala ujian anti-hiperglisemik pula dinilai dengan menentukan peratusan perencatan α-glukosidase. Hasil menunjukkan bahawa PB pada kepekatan 100:0 dan 50:50 mempunyai kandungan fenol tertinggi (masing-masing 30.88 dan 33.06 mg GAE/g ekstrak) dan nilai aktiviti antioksidan paling tinggi (masing-masing 38.24 dan 42.46 mg TEAC/g ekstrak). Bagi DPPH, PB 50:50 menunjukkan peratusan perencatan tertinggi sebanyak 71.48% apabila dibandingkan dengan ekstrak lain. PB pada 100:0, 50:50 dan 0:100 menunjukkan perencatan α-glukosidase tertinggi masing-masing sebanyak 25.65, 30.78 dan 27.65%. Namun begitu, apabila dibandingkan dengan Kuersetin, ekstrak menunjukkan aktiviti anti-hiperglisemik yang rendah. Keputusan ini menunjukkan bahawa PB adalah kaedah pengeringan terbaik manakala pelarut 50:50 merupakan pelarut paling sesuai untuk pengekstrakan daun C. aeruginosa. Korelasi positif antara TPC dengan aktiviti antioksidan dan anti-hiperglisemik menunjukkan bahawa C. aeruginosa mempunyai potensi sebagai sumber antioksidan semula jadi dengan kehadiran sebatian fenol.

Kata kunci: Anti-hiperglisemik; antioksidan; fenol; pengeringan beku; pengeringan ketuhar

 

REFERENCES

An, K., Zhao, D., Wang, Z., Wu, J., Xu, Y. & Xiao, G. 2016. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties and microstructure. Food Chemistry 197(1): 1292-1300.

Anuduang, A., Loo, Y.Y., Jomduang, S., Lim, S.J. & Wan Mustapha, W.A. 2020. Effect of thermal processing on physico-chemical and antioxidant properties in mulberry silkworm (Bombyx mori L.) powder. Foods 9(7): 871-882.

Asif, M. 2015. Chemistry and antioxidant activity of plants containing some phenolic compounds. Chemistry International 1(1): 35-52.

Asmat, U., Khan, A. & Khan, I. 2016. Diabetes mellitus and oxidative stress - A concise review. Saudi Pharmaceutical Journal 24(5): 547-553.

Assefa, A.D. & Keum, Y.S. 2016. Effect of extraction solvent and various drying methods on polyphenol content and antioxidant activities of yuzu (Citrus junosSieb ex Tanaka). Journal of Food Measurement and Characterization 11(2): 576-585.

Association of Official Analytical Chemists (AOAC). 2000. Official Methods of Analysis. Washington D.C.: United States.

Azwanida, N.N. 2015. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Medicinal and Aromatic Plants 4(3): 1-6.

Choudhury, D., Ghosal, M., Das, A.P. & Mandal, P. 2013. Development of single node cutting propagation techniques and evaluation of antioxidant activity of Curcuma aeruginosa Roxburgh rhizome. International Journal of Pharmacy Pharmaceutical Science 5(2): 227-234.

Dent, M., Dragovic-Uzelac, V., Penic, M., Brncic, M., Bosiljkov, T. & Levaj, B. 2013. The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in dalmatian wild sage (Salvia officinalis L.) extracts. Food Technology and Biotechnology 51(1): 84-91.

Dhanani, T., Shah, S., Gajbhiye, N.A. & Kumar, S. 2017. Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arabian Journal of Chemistry 10(1): 1193-1199. 

Edelman, M. & Colt, M. 2016. Nutrient value of leaf vs. seed. Frontiers in Chemistry 4: 32.

George, M. & Britto, S.J. 2015. Phytochemical and antioxidant studies on the essential oil of the rhizome of Curcuma aeruginosa Roxb. International Research Journal of Pharmacy 6(8): 573-579.

Hashim, H., Ahmad, W.Y.W., Zubairi, S.I. & Maskat, M.Y. 2019. Effect of pH on adsorption of organic acids and phenolic compounds by amberlite ira 67 resin. Jurnal Teknologi 81(1): 69-81.

He, M., Zhang, K., Tan, H., Hu, R., Su, J., Wang, J., Huang, L., Zhang, Y. & Li, X. 2015. Nutrient levels within leaves, stems, and roots of the xeric species Reaumuria soongoricain relation to geographical, climatic, and soil conditions. Ecology and Evolution 5(7): 1494-1503.

Hossain, M.A., AL-Mijizy, Z.M., Al-Rashdi, K.K., Weli, A.M. & Al-Riyami, Q. 2013. Effect of temperature and extraction process on antioxidant activity of various leaves crude extracts of Thymus vulgaris. Journal of Coastal Life Medicine 1(2): 130-134.

Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M.C.B. & Rahu, N. 2016. Oxidative stress and inflammation: What polyphenols can do for us? Oxidative Medicine and Cellular Longevity 2016: 7432797.

Irwan, S.Z. & Shahreda, N.J. 2014. Hibiscus rosasinensis leaves: Analysis of proximate, antioxidant activities and inorganic compound. The Malaysian Journal of Analytical Sciences 18(2): 260-270.

Ismail, S.M., Hui, C.K., Aminuddin, A. & Ugusman, A. 2018. Piper sarmentosum as an antioxidant: A systematic review. Sains Malaysiana 47(10): 2359-2368.

Jarikasem, S., Thubthimthed, S., Chawananoraseth, K. & Suntorntanasat, T. 2005. Essential oils from three Curcuma species collected in Thailand. Acta Horticulturae 1(677): 37-41. 

Kumar, S. & Pandey, A.K. 2013. Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal 2013: 162750.

Ling, J.W.A., Chang, L.S., Mohd Khalid, R., Wan Mustapha, W.A., Sofian Seng, N.S., Mohd Razali, N.S., Abdul Rahman, H., Mohd Zaini, N.A. & Lim, S.J. 2020. Sequential extraction of red button ginger (Costus woodsonii): Phytochemical screening and antioxidative activities. Journal of Food Processing and Preservation 44(10): e14776.

Mathela, C. & Joshi, S. 2012. Antioxidant and antibacterial activities of the leaf essential oil and its constituents furanodienone and curzerenone from Lindera pulcherrima(Nees.) Benth. ex hook. f. Pharmacognosy Research 4(2): 80-84.

Medini, F., Fellah, H., Ksouri, R. & Abdelly, C. 2014. Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulumJournal of Taibah University for Science 8(3): 216-224.

Mirghani, M.E.S., Elnour, A.A.M., Kabbashi, N.A., Alam, M.Z., Musa, K.H. & Abdullah, A. 2018. Determination of antioxidant activity of gum arabic: An exudation from two different locations. ScienceAsia 44: 179-186.

Moektiwardoyo, W.M., Tjitraresmi, A., Susilawati, Y., Iskandar, Y., Halimah, E. & Zahryanti, D., 2014. The potential of dewa leaves (Gynura pseudochina(L.) DC) and temu ireng rhizomes (Curcuma aeruginosa Roxb.) as medicinal herbs for dengue fever treatment. Procedia Chemistry 13: 134-141.

Mokrani, A. & Madani, K. 2016. Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persicaL.) fruit. Separation and Purification Technology 162: 68-76.

Murugesu, S., Ibrahim, Z., Ahmed, Q.U., Uzir, B.F., Yusoff, N.N.I., Perumal, V., Abas, F., Shaari, K. & Khatib, A. 2019. Identification of α-glucosidase inhibitors from Clinacanthus nutans leaf extract using liquid chromatography-mass spectrometry-based metabolomics and protein-ligand interaction with molecular docking. Journal of Pharmaceutical Analysis 9(2): 91-99.

Ngo, T.V., Scarlett, C.J., Bowyer, M.C., Ngo, P.D. & Vuong, Q.V. 2017. Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L. Journal of Food Quality 2017: 9305047.

Nguyen, V., Van Vuong, Q., Bowyer, M., Van Altena, I. & Scarlett, C. 2015. Effects of different drying methods on bioactive compound yield and antioxidant capacity of Phyllanthus amarus. Drying Technology 33(8): 1006-1017.

Nisar, T., Iqbal, M., Raza, A., Sadfar, M., Iftikhar, F. & Waheed, M. 2015. Estimation of total phenolics and free radical scavenging of turmeric (Curcuma longa). American-Eurasian Journal of Agriculture and Environmental Science 15(7): 1272-1277.

Panche, A.N., Diwan, A.D. & Chandra, S.R. 2016. Flavonoids: An overview. Journal of Nutritional Science 5(47): 1-15.

Phaniendra, A., Jestadi, D.B. & Periyasamy, L. 2015. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry 30(1): 11-26. 

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D. & Bitto, A. 2017. Oxidative stress: Harms and benefits for human health. Oxidative Medicine and Cellular Longevity 2017: 8416763.

Proença, C., Freitas, M., Ribeiro, D., Oliveira, E., Sousa, J., Tomé, S.M., Ramos, M.J., Silva, A., Fernandes, P.A. & Fernandes, E. 2017. α-Glucosidase inhibition by flavonoids: An in vitro and in silico structure-activity relationship study. Journal of Enzyme Inhibition and Medicinal Chemistry 32(1): 1216-1228.

Quan, N.V., Xuan, T.D., Tran, H.D., Thuy, N., Trang, L., Huong, C.T., Andriana, Y. & Tuyen, P.T. 2019. Antioxidant, α-amylase and α-glucosidase inhibitory activities and potential constituents of Canarium tramdenum bark. Molecules 24(3): 605.

Rahman, H.A., Saari, N., Abas, F., Ismail, A., Mumtaz, M.W. & Abdul Hamid, A. 2017. Anti-obesity and antioxidant activities of selected medicinal plants and phytochemical profiling of bioactive compounds. International Journal of Food Properties 20(11): 2616-2629.

Riyaphan, J., Jhong, C.H., Tsai, M.J., Lee, D.N., Leong, M.K. & Weng, C.F. 2017. Potent natural inhibitors of alpha-glucosidase and alpha-amylase against hyperglycemia in vitro and in vivo. Preprints 2017: 030116.

Safitri, A., Batubara, I. & Khumaida, N. 2017. Thin layer chromatography fingerprint, antioxidant, and antibacterial activities of rhizomes, stems, and leaves of Curcuma aeruginosa Roxb. Journal of Physics: Conference Series 835: 012014.

Sajak, A.A.B., Abas, F., Ismail, A. & Khatib, A. 2016. Effect of different drying treatments and solvent ratios on phytochemical constituents of Ipomoea aquatica and correlation with α-glukosidase inhibitory activity. International Journal of Food Properties 19(12): 2817-2831.

Sathishkumar, R., Lakshmi, P.T.V. & Annamalai, A. 2009. Effect of drying treatment on the content of antioxidants in Enicostemma littorale Blume. Research Journal of Medicinal Plants 3(3): 93-101.

Simoh, S. & Zainal, A. 2015. Chemical profiling of Curcuma aeruginosa Roxb. rhizome using different techniques of solvent extraction. Asian Pacific Journal of Tropical Biomedicine 5(5): 412-417.

Simoh, S., Shin, S.Y., Abd Rahim, F., Ahmad, M.A. & Zainal, A. 2018. Comparative analysis of metabolites and antioxidant potentials from different plant parts of Curcuma aeruginosa roxb. Sains Malaysiana 47(12): 3031-3041.

Sin, T.C., Syed Khalafu, S.H., Mustapha, W.A.W., Maskat, M.Y. & Lim, S.J. 2018. Deodorisation of fucoidan and its effect towards physicochemical characteristics and antioxidation activities. Sains Malaysiana 47(7): 1501-1510.

Siti Zulaikha, A.G., Mediani, A., Khoo, L.W., Lee, S.Y., Leong, S.W. & Abas, F. 2017. Effect of different drying methods and solvent ratios on biological activities of Phylanthus acidus extracts. Intenational Food Research Journal 24(1): 114-120.

Stramarkou, M., Papadaki, S., Kyriakopoulou, K. & Krokida, M. 2017. Effect of drying and extraction conditions on the recovery of bioactive compounds from Chlorella vulgaris. Journal of Applied Phycology 29(6): 2947-2960. 

Sun, C., Wu, Z., Wang, Z. & Zhang, H. 2015. Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evidence-Based Complementary and Alternative Medicine 2015: 595393.

Thaina, P., Tungcharoena, P., Wongnawaa, M., Reanmongkol, W. & Subhadhirasakul, S. 2009. Uterine relaxant effects of Curcuma aeruginosa Roxb. rhizome extracts. Journal of Ethnopharmacology 121(1): 433-443.

Yao, Y., Cheng, X.Z., Wang, L.X., Wang, S.H. & Ren, G. 2012. Major phenolic compounds, antioxidant capacity and antidiabetic potential of rice bean (Vigna umbellata L.) in China. International Journal of Molecular Sciences 13(3): 2707-2716.

Zayapor, M.N., Abdullah, A. & Mustapha, W.A.W. 2020. Antioxidant and anti-diabetic status of popular Malay health tonic consumed for wellness: Help or hype? Sains Malaysiana 49(1): 145-154.

Zhang, Z., Liu, Y. & Che, L. 2018. Effects of different drying methods on the extraction rate and qualities of oils from demucilaged flaxseed. Drying Technology 36(13): 1642-1652.

Zou, Z., Xi, W., Hu, Y., Nie, C. & Zhou, Z. 2016. Antioxidant activity of citrus fruits. Food Chemistry 196(1): 885-896.

 

*Corresponding author; email: hafeedzarahman@ukm.edu.my

 

 

previous