Sains Malaysiana 44(7)(2015): 1011–1019
Evaluation
on the Photocatalytic Degradation Activity of Reactive Blue 4 using
Pure Anatase Nano-TiO2
(Penilaian
pada Aktiviti
Degradasi Fotopemangkinan daripada Reaktif Blue 4 menggunakan
Anatase Nano-TiO2 Tulen)
EMY MARLINA
SAMSUDIN1,
SZE
NEE
GOH2,
TA
YEONG
WU2,
TAN
TONG
LING1,
SHARIFAH BEE
ABD. HAMID1
& JOON CHING JUAN2*
1Nanotechnology &
Catalysis Research Centre (NANOCAT), University of Malaya
50603 Kuala Lumpur,
Malaysia
2Laboratory of Applied
Catalysis and Environmental Technology, School of Science,
Monash University Malaysia
Campus, 46150 Bandar Sunway, Selangor Darul Ehsan
Malaysia
Diserahkan: 24 November 2014/Diterima: 3 Mac 2015
ABSTRACT
Disposal of dye wastewater
into water streams without treatment endangers human and marine
lives. This work focused on the second largest class of textile
dyes after azo dyes due to its high resistivity to biodegradation
and high toxicity. The photocatalytic degradation of Reactive Blue
4 (RB4), an anthraquinone
dye, has been investigated using pure anatase
nano titanium (IV) oxide (TiO2).
The dye molecules were fully degraded and the addition of hydrogen
peroxide (H2O2)
enhanced the photodegradation efficiency.
It is found that the degradation as the hydroxyl radicals in the
bulk solution is sufficient for complete mineralisation.
The disappearance of the dye follows pseudo-first-order kinetics.
The effect of pH, amount of photocatalyst,
UV-light
intensity, light source and concentration of hydrogen peroxide was
ascertained.
Keywords: Anthraquinone dye; hydrogen peroxide; photocatalysis;
textile wastewater; TiO2
ABSTRAK
Pembuangan air
sisa pewarna
ke dalam air sungai
tanpa rawatan
membahayakan kehidupan manusia dan marin. Penyelidikan ini memberi tumpuan kepada pewarna tekstil kelas kedua terbesar
selepas pewarna
azo kerana kerintangan yang tinggi untuk biodegradasi
dan ketoksikan
yang tinggi. Degradasi fotopemangkinan daripada
Reaktif Blue 4 (RB4),
satu pewarna
antrakuinon, telah dikaji menggunakan anatase nano-TiO2 tulen. Molekul pewarna diuraikan
sepenuhnya dan
penambahan hidrogen peroksida (H2O2)
meningkatkan kecekapan
fotopemerosotan. Didapati bahawa
degradasi sebagai
radikal hidroksil dalam penyelesaian pukal adalah mencukupi
untuk mineral lengkap.
Kehilangan
pewarna adalah
mengikut kinetik tertib pertama pseudo. Kesan pH, jumlah fotomangkin, keamatan cahaya UV,
sumber cahaya dan
kepekatan hidrogen
peroksida telah ditentukan dalam kajian ini.
Kata kunci: Foto
pemangkinan; hidrogen
peroksida; pewarna antrakuinon; sisa air kumbahan tekstil; TiO2
RUJUKAN
Aguedach, A.,
Brosillon, S., Morvan,
J. & Lhadi, E.K. 2005. Photocatalytic degradation of azo-dyes reactive black 5 and reactive
yellow 145 in water over a newly deposited titanium dioxide.
Applied Catalysis B: Environment 57(1): 55-62.
Aspland, J.R.
1997. Textile dyeing and coloration. American Association of Textile Chemists and Colorists Research
Triangle Park North Carolina. pp. 354-355.
Barka, N.,
Qourzal, S., Assabbane,
A., Ait-itchou, Y., Nounah,
A., Lachheb, H. & Houas,
A. 2009. Solar photocatalytic degradation of textile dyes on dynamic pilot
plant using supported TiO2. The Arabian Journal
for Science and Engineering 35: 131-137.
Byrne, J.A., Fernandez-Ibañez, P.A., Dunlop,
P.S.M., Alrousan, D.M.A. & Hamilton,
J.W.J. 2011. Photocatalytic enhancement for solar disinfection of water: A review.
International Journal of Photoenergy
2011. Article ID. 798051.
Carneiro, P.A.,
Osugi, M.E., Fugivara,
C.S., Boralle, N., Furlan,
M. & Zanoni, M.V.B. 2005. Evaluation of different electrochemical methods on the oxidation and
degradation of reactive blue 4 in aqueous solution. Chemosphere
59(3): 431-439.
Carp, O., Huisman, C.L. & Reller, A. 2004. Photoinduced reactivity of titanium
dioxide. Solid State Chemistry 32(1- 2): 33-177.
Chakrabarti,
S. & Dutta, B.K. 2004. Photocatalytic degradation of model textile dyes in wastewater using
ZnO as semiconductor catalyst. Journal
of Hazardous Materials 112(3): 269-278.
Chatterjee,
D. & Dasgusta, S. 2005. Visible light
induced photocatalytic degradation of organic pollutants. Journal
of Photochemistry and Photobiology C: Photochemistry Reviews C 6(2-3):
186-205.
Chen, H.Y., Zahraa, O. & Bouchy, M. 1997. Inhibition
by inorganic ions of the adsorption and the photocatalytic degradation
of organic contaminants in TiO2 aqueous
suspension. Journal of Photochemistry and Photobiology
A: Chemistry 108: 37-44.
Christie, R.M. 2007. Environmental
Aspects of Textile Dyeing. Cambridge: Woodhead
Publishing Limited. pp. 6-8.
Daneshvar, N.,
Salari, D. & Khataee,
A.R. 2003. Photocatalytic degradation of azo dye acid red 14 in water: Investigation
of the effect of operational parameters. Journal of Photochemistry
and Photobiology A: Chemistry 157(1): 111-116.
Davis, P. & Huang, C.P. 1990. The removal of substituted phenols by a photocatalytic oxidation process
with cadmium sulphide. Water
Research 24(5): 543-550.
Durán, A.,
Monteagudo, J.M. & Amores,
E. 2008. Solar photo- Fenton degradation of reactive blue
4 in a CPC reactor. Applied Catalysis B: Environment 80(1-2):
42-50.
Epolito, W.J.,
Lee, Y.H., Bottomleyb, L.A. & Pavlostathisa, S.G. 2005. Characterization
of the textile anthraquinone dye reactive
blue 4. Dyes and Pigments 67(1): 35-46.
Gozmen, B.,
Kayan, B., Gizir,
A.M. & Hesenov, A. 2009. Oxidative
degradations of reactive blue 4 dye by different advanced oxidation
methods. Journal of Hazardous Materials 168(1): 129-136.
Hachem, C.,
Bocquillon, F., Zahraa,
O. & Bouchy, M. 2001. Decolourization
of textile industry wastewater by the photocatalytic degradation
process. Dyes and Pigments 49(2): 117-125.
Hamlin, J.D., Phillips, D.A.S. & Whiting, A. 1999. UV/visible spectroscopic studies of the effects of common salt and
urea upon reactive dye solutions. Dyes and Pigments 41(1):
137-142.
Han, F., Kambala, V.S.R., Srinivasan, M.,
Rajarathnam, D. & Naidu, R. 2009. Tailored
titanium dioxide photocatalysts for the
degradation of organic dyes in wastewater treatment: A review. Applied
Catalysis A: General 359(1-2): 25-40.
Houas, A.,
Lachheb, H., Ksibi,
M., Elaloui, E., Guillard,
C. & Herrmann, J.M. 2001. Photocatalytic
degradation pathway of methylene blue in water. Applied
Catalysis B: Environment 31: 145-157.
Hussein,
F.H. 2013. Effect of photocatalytic treatments on physical
and biological properties of textile dyeing wastewater. Asian
Journal of Chemistry 25(16): 9387-9392.
Kaur,
S. & Singh, V. 2008. TiO2 mediated photocatalytic degradation studies of reactive
red 198 by UV irradiation. Journal of Hazardous Materials 141(1):
230-236.
Lee,
Y.H. & Pavlostathis, S.G. 2004. Decolorization and toxicity of reactive
anthraquinone textile dyes under methanogenic
conditions. Water Research 38(7): 1838-1852.
Li,
Y., Zou, L. & Hu, E. 2004. Photocatalytic degradation of dye effluent by titanium dioxide pillar
pellets in aqueous solution. Journal of Environmental Sciences
16(3): 375-379.
Liu, Y., Chen, X., Li,
J. & Burda, C. 2005. Photocatalytic
degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts.
Chemosphere 61(1): 11-18.
Matthews, R.W. 1984.
Hydroxylation reactions induced by near-ultraviolet photolysis of
aqueous titanium dioxide suspensions. Journal of the Chemical
Society, Faraday Transactions 80: 457-471.
Muruganandham, M., Sobana, N. & Swaminathan, M.
2006. Solar assisted photocatalytic and photochemical degradation of Reactive
Black 5. Journal of Hazardous Materials 137(3): 1371-1376.
Neppolian, B., Choi, H.C., Sakthivel, S., Arabindoo, B. &
Murugesan, V. 2002a. Solar light induced
and TiO2 assisted degradation of textile dye reactive
blue 4. Chemosphere 46 (8): 1173-1181.
Neppolian, B., Choi, H.C., Sakthivel, S., Arabindoo, B. &
Murugesan, V. 2002b. Solar/UV-induced
photocatalytic degradation of three commercial textile dyes.
Journal of Hazardous Materials 89(2-3): 303-317.
Neti, N.R. & Misra,
R. 2012. Efficient degradation of Reactive Blue 4 in carbon
bed electrochemical reactor. Chemical Engineering Journal
184: 23-32.
O’
Donoghue, J.L. 1985. Neurotoxicity of Industrial and Commercial
Chemicals. Boca Raton, Florida: Chemical Rubber Company
Press, Incorporation. pp. 129.
Ohtani, B., Ogawa, Y. &
Nishimoto, S. 1997. Photocatalytic activity of amorphous-anatase
mixture of titanium ( IV ) oxide particles
suspended in aqueous solutions. Journal of Physical Chemistry
B 101(19): 3746-3752.
Okamoto,
K.I., Yamamoto, Y., Tanaka, H. & Tanaka, M. 1985. Heterogeneous
photocatalytic decomposition of phenol over TiO2 powder.
Bulletin of the Chemical Society of Japan 58: 2015-2022.
Ollis, D.F., Pelizzetti, E. & Serpone, N.
1991. Destruction of water contaminants. Environmental
Science Technology 25(9): 1523-1529.
Peng, F., Cai, L., Huang, L., Yu, H. &
Wang, H. 2008. Preparation of nitrogen-doped titanium
dioxide with visible-light photocatalytic activity using a facile
hydrothermal method. Journal of Physics and Chemistry
of Solids 69(7): 1657-1664.
Poulious, I. & Aetopoulou, I. 1999. Photocatalytic degradation of the textile
dye reactive orange 16 in the presence of TiO2 suspensions. Environmental
Technology 20(5): 479-487.
Poulios, I. & Tsachpinis, I. 1999. Photodegradation
of the textile dye reactive black 5 in the presence of semiconducting
oxides. Journal of Chemical Technology and Biotechnology 74(4):
349-357.
Regulska, E., Brus, D.M. & Karpinska, J. 2013. Photocatalytic decolourization
of direct yellow 9 on titanium and zinc oxides. International
Journal of Photoenergy 2013: 1-9.
Rice,
F.O., Johnston, W.R. & Evering, B.L.
1932. The
thermal decomposition of organic compounds from the stand point
of free radicals II experimental evidence of the decomposition of
organic compounds into free radicals. Journal of the American
Chemical Society 54(9): 3529-3543.
Robinson, T., McMullan,
G., Marchant, R. & Nigam, P. 2001. Remediation of dyes in textile
effluent: A critical review on current treatment technologies with
a proposed alternative. Bioresource
Technology 77(12): 247-255.
Rys, P. & Zollinger,
H. 1972. Fundamentals of the Chemistry and Applications
of Dyes. New York: Wiley Interscience.
pp. 65-125.
Shon, H., Phuntsho, S., Okour, Y., Cho, D.L.,
Kim, K.S., Li, H.J., Na, S., Kim, J.B. & Kim, J.H. 2008. Visible light responsive titanium dioxide (TiO2).
Journal of the Korean Industrial and Engineering Chemistry 19(1):
1-16.
Sigma
Aldrich. 2008. Material Safety Data Sheets. Retrieved October
1, 2010, from www.sigmaaldrich.com.
Tang, W.Z., Zhang, Z.,
An, H., Quintana, M.O. & Torres, D.F.
1997. TiO2/UV degradation of azo dyes in aqueous solutions.
Enviromental Technology
18(1): 1-12.
Tennakone, K. & Bandara, J. 2001. Photocatalytic activity of dye-sensitized
tin(IV) oxide nanocrystalline
particles attached to zinc oxide particles: Long distance electron
transfer via ballistic transport of electrons across nanocrystallites.
Applied Catalysis A: General 208(1): 335-341.
The
Merck Index. 1976. Rahway. 9th ed. New Jersey:
Merck & Co. Inc. 94.
Uyrgur, A. 1997. An
overview of oxidative and photooxidative
decolorisation treatments of textile waste waters.
Journal of the Society of Dyers and Colourists
113: 211-217.
Vautier, M., Guillard, C. & Herrmann, J.M. 2001. Photocatalytic degradation
of dyes in water: Case study of indigo and of indigo carmine. Journal
of Catalysis 201: 46-59.
Walker,
G.M. & Weatherley, L.R. 2000. Biodegradation
and biosorption of acid anthraquinone
dyes. Environmental Pollution 108(2): 219-223.
Yu,
J.C., Yu, J., Zhang, L. & Ho, W. 2002. Enhancing effects of
water content and ultrasonic irradiation on the photocatalytic activity
of nano-sized TiO2 powders. Journal of Photochemistry
and Photobiology A: Chemistry 148(1-3): 263-271.
Zhao,
M., Chen, S. & Tao, Y. 1995. Photocatalytic degradation of organophosphorus
pesticides using thin films of TiO2. Journal
of Chemical Technology and Biotechnology 64: 339-344.
*Pengarang untuk surat-menyurat; email: jcjuan@um.edu.my
|