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Analysis of T-Year Return Level for Partial Duration Rainfall Series
(Analisis Tahap Ulangan T-Tahun bagi Siri Hujan Tempoh Separa)

Wendy Ling Shinyie* & Noriszura Ismail

ABSTRACT

This paper aims to estimate the Generalized Pareto Distribution (GPD) parameters and predicts the T-year return 
levels of extreme rainfall events using the Partial Duration Series (PDS) method based on the hourly rainfall data of 
five stations in Peninsular Malaysia. In particular, the GPD parameters are estimated using five methods namely the 
method of Moments (MOM), the probability weighted moments (PWM), the L-moments (LMOM), the Trimmed L-moments 
(TLMOM) and the Maximum Likelihood (ML) and the performance of the T-year return level of each estimation method 
is analyzed based on the RMSE measure obtained from Monte Carlo simulation. In addition, we suggest the weighted 
average model, a model which assigns the inverse variance of several methods as weights, to estimate the T-year return 
level. This paper contributes to the hydrological literatures in terms of three main elements. Firstly, we suggest the use 
of hourly rainfall data as an alternative to provide a more detailed and valuable information for the analysis of extreme 
rainfall events. Secondly, this study applies five methods of parametric approach for estimating the GPD parameters and 
predicting the T-year return level. Finally, in this study we propose the weighted average model, a model that assigns 
the inverse variance of several methods as weights, for the estimation of the T-year return level.

Keywords: Generalized Pareto Distribution; parameter estimation; partial duration series; T-year return level

ABSTRAK

Kajian ini bertujuan menganggar parameter Taburan Pareto Teritlak (GPD) dan meramal tahap ulangan T-tahun bagi 
kejadian hujan melampau menggunakan kaedah siri tempoh separa (PDS) berdasarkan data hujan per jam untuk lima 
stesen di Semenanjung Malaysia. Secara khususnya, parameter GPD dianggar melalui lima kaedah iaitu momen (MOM), 
momen kebarangkalian berpemberat (PWM), L-momen (LMOM), TL-Momen (TLMOM) dan kebolehjadian maksimum 
(ML) dan prestasi tahap ulangan T-tahun untuk setiap kaedah dianalisis berdasarkan ukuran RMSE yang diperoleh 
melalui simulasi Monte Carlo. Selain itu, kajian ini mencadangkan model purata berpemberat, iaitu suatu model yang 
mewakilkan pemberat setiap kaedah dengan songsangan varian untuk menganggar tahap ulangan T-tahun. Kajian ini 
menyumbang kepada literatur hidrologi melalui tiga elemen utama. Pertama, kami mencadangkan penggunaan data 
hujan per jam sebagai alternatif untuk memberikan maklumat yang lebih bermakna dan menyeluruh bagi analisis 
kejadian hujan melampau. Kedua, dalam kajian ini kami menggunakan lima kaedah daripada pendekatan berparameter 
untuk menganggar parameter GPD dan meramal tahap ulangan T-tahun. Akhir sekali, kami mencadangkan model 
purata berpemberat, iaitu suatu model yang mewakilkan pemberat setiap kaedah dengan songsangan varian untuk 
penganggaran tahap ulangan T-tahun. 

Kata kunci: Penganggaran parameter; siri tempoh separa; Taburan Pareto Teritlak; tahap ulangan T-tahun 

INTRODUCTION

Over the past several decades, climate change has 
been consistently associated with changes in several 
components of hydrological cycle and system such as 
precipitation patterns, intensity and extremes (IPCC 2007). 
As a result, phenomena related to rainfall frequency such 
as flash floods, landslides, severe erosions and debris 
flows are also showing changing patterns and affecting 
all countries over the world, irrespective of their locations 
on the globe, resulting in potentially huge economic 
and social implications (Floris et al. 2010). In addition, 
the changing patterns of rainfall amounts may affect 
the generation of hydroelectric power, the management 
and implementation of dams and the management of 

cooling water (Harasawa & Nishioka 2003). Recently, 
several areas in Malaysia were also affected by the 
changes in weather patterns and have been experiencing 
intense and heavy rainfalls which cause serious flooding 
and damages to the infrastructure of such areas. As an 
example, in November 2010, a serious flood occurred 
in the areas of North Malaysia involving Kedah, Perlis 
and Kelantan where 50,000 people were evacuated from 
home. A total of RM26 million have been subsidized by 
the government to the farmers in the affected areas, as aids 
and compensations for their severely damaged crops and 
fields. These events have further proved the importance 
of observations, analysis and predictions of climate 
change which can be carried out through hydrological 
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and climatological studies, especially through studies of 
extreme rainfall events. 
	 Extreme weather event can be defined as ‘an event 
that is rare within its statistical reference distribution at 
a particular place’ (IPCC 2001). The amount of extremely 
high or low precipitation, leading to flood or drought, is 
a good example of the many risks of substantial weather. 
Based on hydrological literatures, Extreme value theory 
(EVT) is a powerful and robust approach for capturing 
extreme movements in the tail behaviour of extreme rainfall 
distributions. One of the important properties in EVT is that 
the limiting distribution of the extreme data observed over 
a long period is independent of the underlying distribution 
itself. Therefore, statistical estimates associated with the 
fitted distribution, such as the estimation of high quantile or 
T-year return level, can covers conditions beyond the usual 
phenomenon of rainfall events, which are indicated by the 
extreme data. In studies of water resource management and 
financial risk management, EVT is frequently used to obtain 
probability distributions via two main methods, by fitting 
the maximum or the minimum data of a random sample 
or by modeling the distribution of excess data above a 
certain threshold (Coles 2001; Katz et al. 2002; Kouchak & 
Nasrollahi 2010; Smith 2001). Previous studies on extreme 
rainfall in Malaysia was done by Deni et al. (2009) on the 
trend of wet spells and Zin et al. (2010) on the changes in 
extreme rainfall events. 
	 The annual maxima series (AMS), a method which 
fits distributions to the maximum or the minimum, has 
been considered as one of the most popular approaches 
of EVT. The most probable reason for using this approach 
is that the sample data can be easily extracted and the 
amount of sample data can be largely reduced since only 
the maximum or the minimum are utilized. However, this 
approach ignores other important extreme rainfall data, 
especially those greater than the annual maximum. In 
addition, since the AMS uses only a single data for each 
year, the time series of rainfall data has to be long enough so 
that the sample size is large enough for modeling purposes. 
Several alternatives have been developed to overcome the 
disadvantages of the AMS, including the r-largest order 
statistics model (Smith 1986), the method of independent 
storms (Harris 1999) and the partial duration series (PDS) 
approach (Hosking & Wallis 1987).
	I n recent years, the approaches of extreme value 
studies have changed towards the PDS method, which is 
also called the peaks over the threshold (POT) method, over 
the AMS method (Kouchak & Nasrollahi 2010; Pandey 
et al. 2003; Rasmussen et al. 1994; Todorovic 1978). In 
particular, the PDS has been recommended for modeling 
extreme data by several researchers in environmental areas 
and such studies can be found in Begueria (2005), Lana 
et al. (2006) and Li et al. (2005). In fact, several studies 
have demonstrated that the Generalized Pareto distribution 
(GPD) utilized in the PDS provides a better performance in 
the fit of the extreme hydrological variable compared to 

the Generalized Extreme Value (GEV) distribution utilized 
in the AMS (Cunnane 1973; Madsen et al. 1997). Examples 
of applications of PDS for the Malaysia’s data can be found 
in Zin et al. (2009) and Zin and Jemain (2010). 
	 The GPD, which is a two-parameter distribution 
consisting of special cases of the standard Pareto, the 
exponential and the Pareto type-II distributions, is the 
limiting distribution of the excess over a threshold as 
the threshold approaches the endpoint of the variable. 
Compared to the AMS which considers only the data 
of maximum or minimum, the PDS considers all data 
exceeding a predetermined threshold. Generally, the PDS 
method involves three main steps; the first is to choose 
an appropriate threshold, the second is to estimate the 
GPD parameters and the final is to estimate the extreme 
quantiles. In PDS, the fitting of threshold exceedances 
requires the assumption of Poisson recurrence process 
and the GPD for exceedance data. One of the main issues 
in fitting the GPD on a selected large values of a random 
variable is that the exact location of the upper region or 
the exact threshold value, is required. Therefore, an analyst 
must compromise between two contradictory strategies, 
using a lower tail closer to the central data which provides 
more data but introduces bias towards the central values 
or using a higher tail which provides less data but leads 
to larger variance in the estimated parameters. Several 
methods have been proposed as guidelines for selecting the 
threshold value, but there are no unified method which has 
been generally agreed upon. However, practice-oriented 
guidelines on threshold selection have been proposed by 
Begueria (2005), Lang et al. (1999), Madsen et al. (1997) 
and Rasmussen et al. (1994).
	 The estimation of GPD parameters for extreme data 
are generally implemented using two main approaches, 
parametric and non-parametric. Most hydrological studies 
favoured the fully parametric approach (Coles et al. 2003; 
Lana et al. 2006) and in particular, the most widely used 
parametric estimation models are the maximum likelihood 
(ML), the method of moments (MOM) and the probability 
weighted moments (PWM). In particular, Hosking and 
Wallis (1987) compared the performances of the ML, the 
MOM and the PWM estimators and found that the MOM 
and the PWM were more reliable than the ML. However, 
Ashkar and Tatsambon (2007) proved that the ML estimator 
is consistent for either small or large sample sizes due to 
the implementation of numerical algorithm introduced by 
Davison (1984). Besides the ML, the MOM and the PWM, 
the L-Moments (LMOM) (Hosking 1990), the Least square 
(Moharram et al. 1993), the maximum penalized likelihood 
(Coles & Dixon 1999), the TL-moments (TLMOM) (Elamir & 
Seheult 2003) and the minimum density power divergence 
(Juarez & Schucany 2004) can also be used as alternatives 
for estimating the GPD parameters.
	 This paper aims to estimate the GPD parameters and 
the T-year return levels of extreme rainfall events using 
the PDS method based on the hourly rainfall data of five 
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stations in Peninsular Malaysia. In particular, the parameter 
estimations were performed using five methods of the 
parametric approach namely the MOM, the PWM, the LMOM, 
the TLMOM and the ML and the performance of the T-year 
return level of each estimation method is analyzed based on 
the RMSE measure obtained from Monte Carlo simulation. 
Finally, the weighted average model, a model which 
assigns the inverse variance of several methods as weights, 
is proposed in this study to estimate the T-year return level. 
This paper contributes to the hydrological literatures in 
terms of three main elements. Firstly, this study suggests 
the use of hourly rainfall data as an alternative to provide 
a more detailed and valuable information for the analysis 
of extreme rainfall events. Secondly, this study applies 
five methods of parametric approach for estimating the 
GPD parameters and the T-year return level. Finally, this 
study proposes the weighted average model, a model that 
assigns the inverse variance of several methods as weights, 
for the estimation of the T-year return level.

METHOD

Study Area

The hourly rainfall data from five stations in Peninsular 
Malaysia were analyzed in this paper, where the selected 
stations are Alor Setar which represents the NorthWest 
region, Pekan which represents the East region, Johor 
Bahru which represents the SouthWest region, Ampang 
which represent the West region and Chanis which 
represent the Center region of Peninsular Malaysia. The 
locations of the selected stations are shown in Figure 1, 
whereas the details of the selected stations are shown in 
Table 1. Since the percentage of missing data, which is less 
than 10%, is quite small, the missing values are ignored in 
the analysis. The wet days (the rainfall amount more than 
1 mm) are extracted from the hourly rainfall data. 

Table 1. List of stations

Raingauge 
station

Latitude 
(N)

Longitude 
(E)

Number of 
recorded years

Available 
years

% missing Maximum 
hourly rainfall

Alor Setar 6° 07’ 100° 23’ 39 1970-2008 3 80.5
Pekan 3° 30’ 103° 25’ 39 1970-2008 5 90.9
Johor Bahru 1° 28’ 103° 45’ 39 1970-2008 4 98.0
Ampang 3° 09’ 101° 45’ 39 1970-2008 1 90.8
Chanis 2° 49’ 102° 55’ 29 1980-2008 7 83.5

Figure 1. Location of stations
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Threshold Selection

Let x1, x2, …, xn  be a series of independent observations of 
a random variable X with unknown distribution function 
Fx(x). For modeling the upper tail of Fx(x), consider k 
exceedances of X over a specified threshold u, and let y1, 
y2, …, yk be the excesses or peaks so that yi = xi – u . Based 
on the EVT, the conditional distribution of excesses,  Y 
= [(X – u)⎢X > u], follows the GPD as u → ∞ (or u tends 
towards infinity) with distribution function (Balkema & 
de Haan 1974; Pickands 1975),
							     

	 	 (1)

where σ is the scale parameter, ξ is the shape parameter, the 
range of y is 0 < y < ∞ for ξ ≤ 0 and 0 < y <  for ξ > 0. 
	 One of the main issues in fitting the GPD on a selected 
excess data is that the optimal threshold is required. To 
select an optimal threshold, an analyst must compromise 
between two contradictory strategies, using a lower tail 
closer to the central data which provides more data but 
introduces bias towards the central values or using a 
higher tail which provides less data but leads to larger 
variance in the estimated parameters. In this study, we use 
three plots, namely the mean frequency, the mean excess 
and the threshold choice, as our selection criteria for 
choosing an optimal threshold. For the mean frequency 
plot, the mean of annual number of exceedances above 
a set of threshold value is calculated and the threshold 
value is chosen between [1.2,5] to fulfill the independence 
condition of Poisson process (Begueria 2005). For the 
mean excess plot, the threshold value is chosen from the 
domain where the mean excess, e(u) = E[(X – u)⎢X > u], 
is a linear function of the threshold level (Davison & 
Smith 1990). Finally, for the threshold choice plot, the 
GPD is fitted to a range of thresholds and the stability of 
parameter estimates for the shape parameter, ξ, and the 
modified scale parameter  = σ + ξu are checked. The 
threshold value was chosen from the domain where the 
estimates are approximately constant above the threshold 
(Coles 2001).
	O nce the appropriate threshold has been selected, 
the interdependencies or the serial correlations of the 
excess data are analyzed using declustering technique. In 
particular, we will check the exceedances time series and 
reject the second peak if it occurs within 120 h (or 5 days) 
from the first peak (USWRC 1976).

Estimation Methods

In this study, the estimation of parameters are performed 
using the MOM, the PWM, the LMOM, the TLMOM and the 
ML methods. Let y1, y2, …, yk  be the sample of excess of 
random variable Y = [(X – u)⎢X > u], y1:k ≤ y2:k  ≤ … ≤ yk:k 
be the order statistics of the sample,  be the sample mean 
and s2 be the sample variance. 

Moments (MOM).   MOM estimates of ξ and σ can be 
easily obtained by utilizing the mean and variance of 
the exceedances. The estimates of ξ and σ are given by 

 and 

Probability Weighted Moments (PWM).   Based on Hosking 
and Wallis (1987), the general expression for the rth order 
of PWM of GPD is given by:

	 Mr =  	

The estimate of the rth order of PWM is given by:

	

with plotting position Pi =  The estimates of 

ξ and σ can be obtained using  and 

L-Moments (LMOM).   L-moments are linear combinations 
of order statistics. Therefore, even though the theory of 
L-moments is parallel to the theory of PWM, the L-moments 
are less affected by sampling variability and more robust 
to outliers (Hosking 1990). The L-moments of order r can 
be defined as:	

	 	

for r = 1, 2, … . By using the first and the second samples 

of L-moments,  and  the estimates 

of GPD parameters are    and  

Trimmed L-Moments (TLMOM).   Trimmed L-moments are 
the natural generalization of L-moments that do not require 
the existence of the mean of the underlying distribution 
(Elamir & Seheult 2003). Since the TL-moments assign 
zero weight to extreme observations, they are more robust 
to outliers compared to the LMOM. The TL-moments of 
order r is defined as:

	

where t1 and t2 are the amount of trimming (We 
focus on the symmetric case t1 = t2 = t). By using 
the first, the second and the third samples of TL-

moments,   
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and  the estimates of 

GPD parameters are  and  

where 

Maximum Likelihood (ML).   From the GPD distribution 
function in equation (1), the probability distribution 
function of GPD for ξ ≠ 0 is:

	 fY(yi:k) = 

Therefore, the log-likelihood is:

	

and the ML estimates of the shape, ξ, and the scale, 
σ, parameters can be obtained by maximizing the log 
likelihood. Numerical techniques such as the Newton-
Raphson method can be applied to obtain the parameter 
estimates.

T-year Return Level

The tail distribution of X is useful for researchers of 
environmental and financial risk management studies, as 
it can be used to predict high or extreme quantiles. Since 
the distribution of X < u is unknown and the threshold 
chosen is sufficiently large to assume the Poisson 
recurrence process, the yearly rate of exceedances, 
which is also known as the crossing rate, λ, is the 
number of exceedances over the number of recorded 
years, i.e. λ = k/t, and hence, the T-year exceedance YT  
is defined as (1 – 1/λT) quantile in the distribution of 
the exceedances. Inverting equation (1) and substituting 
y = x – u, the expression of the estimated T-year return 
level  is obtained as:

	 	  (2)

	I n this study, the return levels for T = 5, 10, 25, 50, 100, 
200 and 500 years were calculated based on the parameters 
estimated from five methods (MOM, PWM, LMOM, TLMOM 
and ML). The performances of all methods are analyzed 
based on the RMSE obtained from Monte Carlo simulation 
(with 500 simulations). The RMSE is calculated as:

	 RMSE = 	 (3)

where  is the simulated return levels. The 95% confidence 
bounds are also obtained from Monte Carlo simulation 
using:

	 	 (4)

	 Since the size of simulation numbers (500 simulations) 
is large, the confidence bound in (4) can be considered as 
an appropriate asymptotic measure.

Weighted Average Return Level

We suggest the weighted average model for the estimation 
of T-year return level. The advantage of using this model 
is that several methods can be considered in estimating 
the return level, whereby each method is weighted by the 
inverse variance, indicating that the method with higher 
variance has lesser weight and vice versa. Intuitively, 
the best method for each station may differ, due to the 
uniqueness of data and the differences in the assumptions of 
each method. The proposed model is a suitable alternative 
if there is no single method which is uniformly best for all 
stations and if the analyst wants to take into accounts more 
than one method to predict the return level. The weighted 
average return level can be calculated as:
								      
	 	 (5)

where  wi =  and n is the number
 

of methods. The 95% confidence intervals are obtained 

through  with 

RESULTS AND DISCUSSION

In this study, optimal threshold was selected based on 
the mean frequency, the mean excess and the threshold 
choice plots which were constructed for the rainfall 
amounts ranging from the 95th to the 99.9th percentiles. 
As an example, Figure 2 shows the mean excess plot (in 
hours), the mean frequency plot (in hours) and threshold 
choice plot of Alor Setar station. The threshold was chosen 
from [1.2,5] of the mean frequency, the domain where 
the mean excess is linear and the domain where the ML 
estimates were approximately constant. The same plots 
were constructed and the same criteria were applied for 
choosing the optimal threshold of other stations. 
	 Table 2 provides the optimal threshold, the mean 
frequency, the mean excess and the parameter estimates. 
The results indicate that the optimal thresholds of all 
stations were equivalent to the 99th percentile. After the 
selection of an appropriate threshold, the serial correlations 
of the excess data were checked using declustering 
technique. Descriptive summary for the excess data is 
provided in Table 3. 
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	 The exceedance data were fitted using the MOM, 
PWM, LMOM, TLMOM and ML methods and the parameter 
estimates are provided in Table 4. The results indicated that 
the parameter estimates are similar, showing only minimal 
deviations between different methods. The ML method 
provides converged solutions for all stations, indicating 
that the fitting procedures for the exceedance hourly data 
did not encounter any numerical problems. The shape 
parameters for all stations were nearly zero, implying 
possible utilization of the exponential distribution. 
	 The T-year return levels for all methods were 
calculated using (2) and the results are displayed in Table 5. 
The performance of each estimation method was evaluated 
based on the RMSE measure obtained from Monte Carlo 
simulation (with 500 simulations), where a smaller RMSE 
indicated a better performance. From the overall results, 
the percentage of ML estimators that produced the lowest 
RMSE was 55.7%, followed by the MOM estimators (44.3%). 
This result was expected due to the asymptotic properties 
of the ML estimators.
	 Finally, the weighted T-year return levels based 
on the best two methods, the ML and the MOM, were 

calculated using (5) and the 95% confidence intervals of 
the weighted T-year return levels were obtained. The results 
are displayed in Table 6 and the plots are shown in Figure 
3. As expected, the longer the years, the higher the return 
levels and the larger the confidence bounds. The 100-year 
return period is of particular interest as it is the standard 
measure utilized in infrastructure design. 

CONCLUSION

In this paper, we estimated the GPD parameters of extreme 
rainfall events using the PDS method based on the hourly 
rainfall data of five stations in Peninsular Malaysia. In 
particular, the GPD parameters were estimated using five 
methods namely the MOM, the PWM, the LMOM, the TLMOM 
and the ML. Based on the results, the parameter estimates 
for all methods were similar, showing only minimal 
deviations between different methods.
	I n addition, from this research we predicted the T-year 
return level of each estimation method and analyzed the 
performance of each method based on the RMSE measure 
obtained from Monte Carlo simulation. The overall results 

Table 2. List of selected thresholds

Raingauge 
station

Threshold 
value

Mean 
frequency

Mean 
excess

Scale estimated 
(standard error)

Shape estimated 
(standard error)

Number of 
exceedances 

(after declustering)
Alor Setar 34.60 3.26 10.62 12.95 (1.61) - 0.18 (0.09) 112
Pekan 37.29 3.46 11.13 11.50 (1.47) - 0.03 (0.09) 129
Johor Bahru 40.64 3.44 10.65 10.39 (1.46)  0.03 (0.11) 114
Ampang 46.35 3.18 11.30 12.16 (1.78) - 0.08 (0.12) 112
Chanis 37.00 2.79 10.58 12.16 (1.93) - 0.10 (0.11)  74

Table 3. Descriptive summary for exceedance data

Raingauge station  s2

Alor Setar 11.38  95.97 11.38 5.29 10.02 2.86 0.51
Pekan 11.23 122.50 11.23 5.70  9.35 2.89 0.68
Johor Bahru 11.29 127.48 11.29 5.91  9.47 3.16 0.65
Ampang 11.96 124.40 11.96 6.03 10.34 3.31 0.62
Chanis 11.22 105.36 11.22 5.34  9.54 2.65 0.57

Table 4. Parameter estimates for all methods

Method Alor Setar Pekan Johor Bahru 	 Ampang	 Chanis
Scale Shape Scale Shape Scale Shape Scale Shape Scale Shape

MOM
PWM
LMOM
TLMOM
ML

13.36
13.16
13.08
13.36
13.73

0.174
0.157
0.150
0.174
0.205

11.39
10.96
10.89
10.85
11.50

0.015
-0.024
-0.030
-0.052
0.024

11.28
10.34
10.26
11.82
11.36

-0.003
-0.084
-0.091
0.062
0.006

12.87
11.85
11.76
13.53
13.67

0.075
-0.010
-0.017
0.141
0.138

12.32
12.47
12.35
11.66
12.52

0.098
0.111
0.101
0.028
0.115
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Figure 3. Plots of weighted return levels and 95% confidence intervals: (a) Alor Setar, 
(b) Pekan, (c) Johor Bahru, (d) Ampang and (e) Chanis
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imply that the ML was the best method, followed by the 
MOM.
	 Finally, we also suggested the weighted average 
model, a model which assigns the inverse variance of 
several methods as weights, to estimate the T-year return 
level. Based on the results, the weighted average model 
was a suitable alternative for predicting the T-year return 
level if there was no single method which was uniformly 
best for all stations and if the analyst wants to take into 
accounts more than one method to predict the return level. 
In this study, the weighted T-year return level utilizes the 
ML and MOM methods.
	 For application purposes, the prediction of extreme 
rainfall events for several return periods provide important 
and valuable information for the management and the 
planning of water resources, especially for proper drainage 
systems, reservoirs and ground surface waters and for 
utilizations in agricultural sectors and socio-economic 
activities. The information can be used to facilitate the 
governments and other related parties in prioritizing water 
resources in their efforts to reduce or control the risks of 
large losses.
	 As mentioned previously, the estimation of GPD 
parameters for extreme data are generally implemented 
using two main approaches, parametric and non-parametric. 
This study has focused on the estimation methods from the 
fully parametric approach. In the last few years however, 
there has been a shift from the parametric approach 
for statistics of extremes towards a semi-parametric 
approach for the estimation of the right-tail distribution. 
In fact, several studies in semi-parametric approach have 
provided interesting and meaningful results, especially in 
determining the optimal threshold, which resulted in better 
estimates and inferences. The semi-parametric approach 
of the PDS method will be pursued in our future studies. 
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