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Analysis of 7-Year Return Level for Partial Duration Rainfall Series
(Analisis Tahap Ulangan 7-Tahun bagi Siri Hujan Tempoh Separa)

WENDY LING SHINYIE* & NORISZURA ISMAIL

ABSTRACT

This paper aims to estimate the Generalized Pareto Distribution (GPD) parameters and predicts the T-year return
levels of extreme rainfall events using the Partial Duration Series (PDS) method based on the hourly rainfall data of
five stations in Peninsular Malaysia. In particular, the GPD parameters are estimated using five methods namely the
method of Moments (MOM), the probability weighted moments (PWM), the L-moments (LMOM), the Trimmed L-moments
(TLMOM) and the Maximum Likelihood (ML) and the performance of the T-year return level of each estimation method
is analyzed based on the RMSE measure obtained from Monte Carlo simulation. In addition, we suggest the weighted
average model, a model which assigns the inverse variance of several methods as weights, to estimate the T-year return
level. This paper contributes to the hydrological literatures in terms of three main elements. Firstly, we suggest the use
of hourly rainfall data as an alternative to provide a more detailed and valuable information for the analysis of extreme
rainfall events. Secondly, this study applies five methods of parametric approach for estimating the GPD parameters and
predicting the T-year return level. Finally, in this study we propose the weighted average model, a model that assigns
the inverse variance of several methods as weights, for the estimation of the T-year return level.

Keywords: Generalized Pareto Distribution; parameter estimation; partial duration series, T-year return level

ABSTRAK

Kajian ini bertujuan menganggar parameter Taburan Pareto Teritlak (GPD) dan meramal tahap ulangan T-tahun bagi
kejadian hujan melampau menggunakan kaedah siri tempoh separa (PDS) berdasarkan data hujan per jam untuk lima
stesen di Semenanjung Malaysia. Secara khususnya, parameter GPD dianggar melalui lima kaedah iaitu momen (MOM),
momen kebarangkalian berpemberat (PWM), L-momen (LMOM), TL-Momen (TLMOM) dan kebolehjadian maksimum
(ML) dan prestasi tahap ulangan T-tahun untuk setiap kaedah dianalisis berdasarkan ukuran RMSE yang diperoleh
melalui simulasi Monte Carlo. Selain itu, kajian ini mencadangkan model purata berpemberat, iaitu suatu model yang
mewakilkan pemberat setiap kaedah dengan songsangan varian untuk menganggar tahap ulangan T-tahun. Kajian ini
menyumbang kepada literatur hidrologi melalui tiga elemen utama. Pertama, kami mencadangkan penggunaan data
hujan per jam sebagai alternatif untuk memberikan maklumat yang lebih bermakna dan menyeluruh bagi analisis
kejadian hujan melampau. Kedua, dalam kajian ini kami menggunakan lima kaedah daripada pendekatan berparameter
untuk menganggar parameter GPD dan meramal tahap ulangan T-tahun. Akhir sekali, kami mencadangkan model
purata berpemberat, iaitu suatu model yang mewakilkan pemberat setiap kaedah dengan songsangan varian untuk
penganggaran tahap ulangan T-tahun.

Kata kunci: Penganggaran parameter; siri tempoh separa; Taburan Pareto Teritlak; tahap ulangan T-tahun

INTRODUCTION

Over the past several decades, climate change has
been consistently associated with changes in several
components of hydrological cycle and system such as
precipitation patterns, intensity and extremes (IPCC 2007).
As aresult, phenomena related to rainfall frequency such
as flash floods, landslides, severe erosions and debris
flows are also showing changing patterns and affecting
all countries over the world, irrespective of their locations
on the globe, resulting in potentially huge economic
and social implications (Floris et al. 2010). In addition,
the changing patterns of rainfall amounts may affect
the generation of hydroelectric power, the management
and implementation of dams and the management of

cooling water (Harasawa & Nishioka 2003). Recently,
several areas in Malaysia were also affected by the
changes in weather patterns and have been experiencing
intense and heavy rainfalls which cause serious flooding
and damages to the infrastructure of such areas. As an
example, in November 2010, a serious flood occurred
in the areas of North Malaysia involving Kedah, Perlis
and Kelantan where 50,000 people were evacuated from
home. A total of RM26 million have been subsidized by
the government to the farmers in the affected areas, as aids
and compensations for their severely damaged crops and
fields. These events have further proved the importance
of observations, analysis and predictions of climate
change which can be carried out through hydrological
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and climatological studies, especially through studies of
extreme rainfall events.

Extreme weather event can be defined as ‘an event
that is rare within its statistical reference distribution at
a particular place’ (Ipcc 2001). The amount of extremely
high or low precipitation, leading to flood or drought, is
a good example of the many risks of substantial weather.
Based on hydrological literatures, Extreme value theory
(EVT) is a powerful and robust approach for capturing
extreme movements in the tail behaviour of extreme rainfall
distributions. One of the important properties in EVT is that
the limiting distribution of the extreme data observed over
along period is independent of the underlying distribution
itself. Therefore, statistical estimates associated with the
fitted distribution, such as the estimation of high quantile or
T-year return level, can covers conditions beyond the usual
phenomenon of rainfall events, which are indicated by the
extreme data. In studies of water resource management and
financial risk management, EVT is frequently used to obtain
probability distributions via two main methods, by fitting
the maximum or the minimum data of a random sample
or by modeling the distribution of excess data above a
certain threshold (Coles 2001 ; Katz et al. 2002; Kouchak &
Nasrollahi 2010; Smith 2001). Previous studies on extreme
rainfall in Malaysia was done by Deni et al. (2009) on the
trend of wet spells and Zin et al. (2010) on the changes in
extreme rainfall events.

The annual maxima series (AMS), a method which
fits distributions to the maximum or the minimum, has
been considered as one of the most popular approaches
of EVT. The most probable reason for using this approach
is that the sample data can be easily extracted and the
amount of sample data can be largely reduced since only
the maximum or the minimum are utilized. However, this
approach ignores other important extreme rainfall data,
especially those greater than the annual maximum. In
addition, since the AMS uses only a single data for each
year, the time series of rainfall data has to be long enough so
that the sample size is large enough for modeling purposes.
Several alternatives have been developed to overcome the
disadvantages of the AMS, including the r-largest order
statistics model (Smith 1986), the method of independent
storms (Harris 1999) and the partial duration series (PDS)
approach (Hosking & Wallis 1987).

In recent years, the approaches of extreme value
studies have changed towards the PDS method, which is
also called the peaks over the threshold (POT) method, over
the AMS method (Kouchak & Nasrollahi 2010; Pandey
et al. 2003; Rasmussen et al. 1994; Todorovic 1978). In
particular, the PDS has been recommended for modeling
extreme data by several researchers in environmental areas
and such studies can be found in Begueria (2005), Lana
et al. (2006) and Li et al. (2005). In fact, several studies
have demonstrated that the Generalized Pareto distribution
(GPD) utilized in the PDS provides a better performance in
the fit of the extreme hydrological variable compared to

the Generalized Extreme Value (GEV) distribution utilized
in the AMS (Cunnane 1973; Madsen et al. 1997). Examples
of applications of PDS for the Malaysia’s data can be found
in Zin et al. (2009) and Zin and Jemain (2010).

The GPD, which is a two-parameter distribution
consisting of special cases of the standard Pareto, the
exponential and the Pareto type-II distributions, is the
limiting distribution of the excess over a threshold as
the threshold approaches the endpoint of the variable.
Compared to the AMS which considers only the data
of maximum or minimum, the PDS considers all data
exceeding a predetermined threshold. Generally, the PDS
method involves three main steps; the first is to choose
an appropriate threshold, the second is to estimate the
GPD parameters and the final is to estimate the extreme
quantiles. In PDS, the fitting of threshold exceedances
requires the assumption of Poisson recurrence process
and the GPD for exceedance data. One of the main issues
in fitting the GPD on a selected large values of a random
variable is that the exact location of the upper region or
the exact threshold value, is required. Therefore, an analyst
must compromise between two contradictory strategies,
using a lower tail closer to the central data which provides
more data but introduces bias towards the central values
or using a higher tail which provides less data but leads
to larger variance in the estimated parameters. Several
methods have been proposed as guidelines for selecting the
threshold value, but there are no unified method which has
been generally agreed upon. However, practice-oriented
guidelines on threshold selection have been proposed by
Begueria (2005), Lang et al. (1999), Madsen et al. (1997)
and Rasmussen et al. (1994).

The estimation of GPD parameters for extreme data
are generally implemented using two main approaches,
parametric and non-parametric. Most hydrological studies
favoured the fully parametric approach (Coles et al. 2003;
Lana et al. 2006) and in particular, the most widely used
parametric estimation models are the maximum likelihood
(ML), the method of moments (MOM) and the probability
weighted moments (PWM). In particular, Hosking and
Wallis (1987) compared the performances of the ML, the
MOM and the PWM estimators and found that the MOM
and the PWM were more reliable than the ML. However,
Ashkar and Tatsambon (2007) proved that the ML estimator
is consistent for either small or large sample sizes due to
the implementation of numerical algorithm introduced by
Davison (1984). Besides the ML, the MOM and the PWM,
the L-Moments (LMOM) (Hosking 1990), the Least square
(Moharram et al. 1993), the maximum penalized likelihood
(Coles & Dixon 1999), the TL-moments (TLMOM) (Elamir &
Seheult 2003) and the minimum density power divergence
(Juarez & Schucany 2004) can also be used as alternatives
for estimating the GPD parameters.

This paper aims to estimate the GPD parameters and
the T-year return levels of extreme rainfall events using
the PDS method based on the hourly rainfall data of five



stations in Peninsular Malaysia. In particular, the parameter
estimations were performed using five methods of the
parametric approach namely the MOM, the PWM, the LMOM,
the TLMOM and the ML and the performance of the 7-year
return level of each estimation method is analyzed based on
the RMSE measure obtained from Monte Carlo simulation.
Finally, the weighted average model, a model which
assigns the inverse variance of several methods as weights,
is proposed in this study to estimate the 7-year return level.
This paper contributes to the hydrological literatures in
terms of three main elements. Firstly, this study suggests
the use of hourly rainfall data as an alternative to provide
a more detailed and valuable information for the analysis
of extreme rainfall events. Secondly, this study applies
five methods of parametric approach for estimating the
GPD parameters and the 7-year return level. Finally, this
study proposes the weighted average model, a model that
assigns the inverse variance of several methods as weights,
for the estimation of the 7-year return level.
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METHOD

STUDY AREA

The hourly rainfall data from five stations in Peninsular
Malaysia were analyzed in this paper, where the selected
stations are Alor Setar which represents the NorthWest
region, Pekan which represents the East region, Johor
Bahru which represents the SouthWest region, Ampang
which represent the West region and Chanis which
represent the Center region of Peninsular Malaysia. The
locations of the selected stations are shown in Figure 1,
whereas the details of the selected stations are shown in
Table 1. Since the percentage of missing data, which is less
than 10%, is quite small, the missing values are ignored in
the analysis. The wet days (the rainfall amount more than
1 mm) are extracted from the hourly rainfall data.

TABLE 1. List of stations

Raingauge Latitude Longitude Number of Available % missing Maximum
station (N) (E) recorded years years hourly rainfall
Alor Setar 6° 07’ 100° 23° 39 1970-2008 3 80.5
Pekan 3°30° 103° 25° 39 1970-2008 5 90.9
Johor Bahru 1°28’ 103° 45° 39 1970-2008 4 98.0
Ampang 3°09 101° 45° 39 1970-2008 1 90.8
Chanis 2° 49’ 102° 55° 29 1980-2008 7 83.5
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FIGURE 1. Location of stations
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THRESHOLD SELECTION

Letx,x,, ..., x, be a series of independent observations of
a random variable X with unknown distribution function
F (x). For modeling the upper tail of F (x), consider k
exceedances of X over a specified threshold u, and let y ,
Y,» ---» ¥, be the excesses or peaks so that y, = x,—u . Based
on the EVT, the conditional distribution of excesses, Y
= [(X — w)| X > u], follows the GPD as u — o (or u tends
towards infinity) with distribution function (Balkema &
de Haan 1974; Pickands 1975),

l—(l—%y)”E £=0
F ()= 7 , )
l—exp(—l) £E=0
o

where o is the scale parameter, & is the shape parameter, the
rangeofyis0<y<0<>for§sOandO<y<g for §>0.

One of the main issues in fitting the GPD on a selected
excess data is that the optimal threshold is required. To
select an optimal threshold, an analyst must compromise
between two contradictory strategies, using a lower tail
closer to the central data which provides more data but
introduces bias towards the central values or using a
higher tail which provides less data but leads to larger
variance in the estimated parameters. In this study, we use
three plots, namely the mean frequency, the mean excess
and the threshold choice, as our selection criteria for
choosing an optimal threshold. For the mean frequency
plot, the mean of annual number of exceedances above
a set of threshold value is calculated and the threshold
value is chosen between [1.2,5] to fulfill the independence
condition of Poisson process (Begueria 2005). For the
mean excess plot, the threshold value is chosen from the
domain where the mean excess, e(u) = E[(X — u)| X > u],
is a linear function of the threshold level (Davison &
Smith 1990). Finally, for the threshold choice plot, the
GPD is fitted to a range of thresholds and the stability of
parameter estimates for the shape parameter, &, and the
modified scale parameter G = 0 + &u are checked. The
threshold value was chosen from the domain where the
estimates are approximately constant above the threshold
(Coles 2001).

Once the appropriate threshold has been selected,
the interdependencies or the serial correlations of the
excess data are analyzed using declustering technique. In
particular, we will check the exceedances time series and
reject the second peak if it occurs within 120 h (or 5 days)
from the first peak (USWRC 1976).

ESTIMATION METHODS

In this study, the estimation of parameters are performed
using the MOM, the PWM, the LMOM, the TLMOM and the
ML methods. Let y,, y,, ..., ¥, be the sample of excess of
random variable ¥ = [(X —w)| X > u], y, <y, <...<y_,
be the order statistics of the sample, y be the sample mean
and s* be the sample variance.

Moments (MOM). MOM estimates of & and ¢ can be
easily obtained by utilizing the mean and variance of
the exceedances. The estimates of & and o are given by
~ 1(y? P y?

E=2(32—1) ando —2y(sz+1 .

Probability Weighted Moments (PWM). Based on Hosking

and Wallis (1987), the general expression for the rth order
of PWM of GPD is given by:

A S S
T4 (1+7)(1+7r+E)

The estimate of the rth order of PWM is given by:

2

k
M, =E(1_R) Yiu 1 K,
-1
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=035 The estimates of

with plotting position P, =

k -
& and o can be obtained using ‘é=AMi“A—2 and
o M, -2M,
G 2M,M,
Vi, 201

L-Moments (LMOM). L-moments are linear combinations
of order statistics. Therefore, even though the theory of
L-moments is parallel to the theory of PWM, the L.-moments
are less affected by sampling variability and more robust
to outliers (Hosking 1990). The L-moments of order » can
be defined as:

Trimmed L-Moments (TLMOM). Trimmed L-moments are
the natural generalization of L-moments that do not require
the existence of the mean of the underlying distribution
(Elamir & Seheult 2003). Since the TL-moments assign
zero weight to extreme observations, they are more robust
to outliers compared to the LMOM. The TL-moments of
order r is defined as:

(A < i(r-1 ]
Mld):%Eo(_l) (r . )E(le —z:r+t,+t2),

where ¢, and t, are the amount of trimming (We
focus on the symmetric case t, = t,= t). By using
the first, the second and the third samples of TL-

R G(5+E R 5
moments, )\f‘)=¥ A= 60

(2+éﬂ3+éy ’ (2+éﬂ3+éﬂ4+é)




and A\ = 605 (l_é) the estimates of
’ 9(2+é)(3+é)(4+é)(5+é)’
GPD parameters areé=% and & =( (é)(i; 3) A,
3 +

where t) =) /3.

Maximum Likelihood (ML). From the GPD distribution
function in equation (1), the probability distribution
function of GPD for £ # 0 is:

1 Eyi:k )E]
= |12 |
fy(yi:k) o ( o
Therefore, the log-likelihood is:

1(y,4:6,E)=-kInG + {-1) k 1n(1+§y“‘),

(yl.k E) (E Z S

and the ML estimates of the shape, &, and the scale,
0, parameters can be obtained by maximizing the log
likelihood. Numerical techniques such as the Newton-
Raphson method can be applied to obtain the parameter
estimates.

T-YEAR RETURN LEVEL

The tail distribution of X is useful for researchers of
environmental and financial risk management studies, as
it can be used to predict high or extreme quantiles. Since
the distribution of X < u is unknown and the threshold
chosen is sufficiently large to assume the Poisson
recurrence process, the yearly rate of exceedances,
which is also known as the crossing rate, A, is the
number of exceedances over the number of recorded
years, i.e. 1 = k/t, and hence, the T-year exceedance Y,
is defined as (1 — 1/AT) quantile in the distribution of
the exceedances. Inverting equation (1) and substituting
y = x — u, the expression of the estimated 7-year return
level X, is obtained as:

% —usS 1-(1)é )
e YO

In this study, the return levels for 7= 5, 10, 25, 50, 100,
200 and 500 years were calculated based on the parameters
estimated from five methods (MOM, PWM, LMOM, TLMOM
and ML). The performances of all methods are analyzed
based on the RMSE obtained from Monte Carlo simulation
(with 500 simulations). The RMSE is calculated as:

- )A(; ) )A(T )2 ]0.5

X

RMSE =

. 3)

T
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where X; is the simulated return levels. The 95% confidence
bounds are also obtained from Monte Carlo simulation
using:

mean(}?;):l.96,'Var()A(;). @

Since the size of simulation numbers (500 simulations)
is large, the confidence bound in (4) can be considered as
an appropriate asymptotic measure.

WEIGHTED AVERAGE RETURN LEVEL

We suggest the weighted average model for the estimation
of T-year return level. The advantage of using this model
is that several methods can be considered in estimating
the return level, whereby each method is weighted by the
inverse variance, indicating that the method with higher
variance has lesser weight and vice versa. Intuitively,
the best method for each station may differ, due to the
uniqueness of data and the differences in the assumptions of
each method. The proposed model is a suitable alternative
if there is no single method which is uniformly best for all
stations and if the analyst wants to take into accounts more
than one method to predict the return level. The weighted
average return level can be calculated as:

é = ’Ex Wiéi’ (5)
i=1

1 N 1

Var (é, ) 2 Var (él )

and n is the number

where w, =

of methods. The 95% confidence intervals are obtained

through 6 +1.96, [Var (é) with Var (é) = E w’Var (é,)
i=1

RESULTS AND DISCUSSION

In this study, optimal threshold was selected based on
the mean frequency, the mean excess and the threshold
choice plots which were constructed for the rainfall
amounts ranging from the 95th to the 99.9th percentiles.
As an example, Figure 2 shows the mean excess plot (in
hours), the mean frequency plot (in hours) and threshold
choice plot of Alor Setar station. The threshold was chosen
from [1.2,5] of the mean frequency, the domain where
the mean excess is linear and the domain where the ML
estimates were approximately constant. The same plots
were constructed and the same criteria were applied for
choosing the optimal threshold of other stations.

Table 2 provides the optimal threshold, the mean
frequency, the mean excess and the parameter estimates.
The results indicate that the optimal thresholds of all
stations were equivalent to the 99th percentile. After the
selection of an appropriate threshold, the serial correlations
of the excess data were checked using declustering
technique. Descriptive summary for the excess data is
provided in Table 3.



1394

uore)s Jejog Jory 103 301d 2010yd proysaiyl pue joid ssaoxd ueaw ‘jo[d Aouonbaiy ued ‘g G¥NOIA

proysayg,
0 09 0S ov o€ oz o] 0
| | 1 | | | | |
\GIOIO Hhr
N L
/+-+\+44&74,ALL-AééééloéLlo -
/é |.0
O
o
proysayg,
0 09 05 04 oc (074 (o] 0
| | 1 | | | | 1
AN / ~
o -0 -9 I53]
— o

adeyg

9[ndS PaYIPON

SSQOXF UBSIA

0J

Sl

(anoy/wiwy proysai ],
G99 09 69 05 G Oy G 0 GZ O¢
| | | | | | |
- - o o .
* _ P .
. *
..

.| *

[ ] - .

/ I\ ~ n /
/- )
— N . N B ,
m ll m—=H

SS90XJ UBS|\ m
Aouanbai{ ues|y e

ol

Gl

0c

Kouanbary ueopy



1395

TABLE 2. List of selected thresholds

Raingauge Threshold Mean Mean Scale estimated Shape estimated Number of
station value frequency excess (standard error) (standard error) exceedances
(after declustering)
Alor Setar 34.60 3.26 10.62 12.95 (1.61) -0.18 (0.09) 112
Pekan 37.29 3.46 11.13 11.50 (1.47) -0.03 (0.09) 129
Johor Bahru 40.64 3.44 10.65 10.39 (1.46) 0.03 (0.11) 114
Ampang 46.35 3.18 11.30 12.16 (1.78) -0.08 (0.12) 112
Chanis 37.00 2.79 10.58 12.16 (1.93) -0.10 (0.11) 74
TABLE 3. Descriptive summary for exceedance data

Raingauge station y s? I A, Al A Ay

Alor Setar 11.38 95.97 11.38 5.29 10.02 2.86 0.51

Pekan 11.23 122.50 11.23 5.70 9.35 2.89 0.68

Johor Bahru 11.29 127.48 11.29 591 9.47 3.16 0.65

Ampang 11.96 124.40 11.96 6.03 10.34 3.31 0.62

Chanis 11.22 105.36 11.22 5.34 9.54 2.65 0.57

The exceedance data were fitted using the MOM,
PWM, LMOM, TLMOM and ML methods and the parameter
estimates are provided in Table 4. The results indicated that
the parameter estimates are similar, showing only minimal
deviations between different methods. The ML method
provides converged solutions for all stations, indicating
that the fitting procedures for the exceedance hourly data
did not encounter any numerical problems. The shape
parameters for all stations were nearly zero, implying
possible utilization of the exponential distribution.

The T-year return levels for all methods were
calculated using (2) and the results are displayed in Table 5.
The performance of each estimation method was evaluated
based on the RMSE measure obtained from Monte Carlo
simulation (with 500 simulations), where a smaller RMSE
indicated a better performance. From the overall results,
the percentage of ML estimators that produced the lowest
RMSE was 55.7%, followed by the MOM estimators (44.3%).
This result was expected due to the asymptotic properties
of the ML estimators.

Finally, the weighted T-year return levels based
on the best two methods, the ML and the MOM, were

calculated using (5) and the 95% confidence intervals of
the weighted 7-year return levels were obtained. The results
are displayed in Table 6 and the plots are shown in Figure
3. As expected, the longer the years, the higher the return
levels and the larger the confidence bounds. The 100-year
return period is of particular interest as it is the standard
measure utilized in infrastructure design.

CONCLUSION

In this paper, we estimated the GPD parameters of extreme
rainfall events using the PDS method based on the hourly
rainfall data of five stations in Peninsular Malaysia. In
particular, the GPD parameters were estimated using five
methods namely the MOM, the PWM, the LMOM, the TLMOM
and the ML. Based on the results, the parameter estimates
for all methods were similar, showing only minimal
deviations between different methods.

In addition, from this research we predicted the 7T-year
return level of each estimation method and analyzed the
performance of each method based on the RMSE measure
obtained from Monte Carlo simulation. The overall results

TABLE 4. Parameter estimates for all methods

Method Alor Setar Pekan Johor Bahru Ampang Chanis
Scale Shape Scale Shape Scale Shape Scale Shape Scale Shape
MOM 13.36 0.174 11.39 0.015 11.28 -0.003 12.87 0.075 12.32 0.098
PWM 13.16 0.157 10.96 -0.024 10.34 -0.084 11.85 -0.010 12.47 0.111
LMOM 13.08 0.150 10.89 -0.030 10.26 -0.091 11.76 -0.017 12.35 0.101
TLMOM 13.36 0.174 10.85 -0.052 11.82 0.062 13.53 0.141 11.66 0.028
ML 13.73 0.205 11.50 0.024 11.36 0.006 13.67 0.138 12.52 0.115
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FIGURE 3. Plots of weighted return levels and 95% confidence intervals: (a) Alor Setar,
(b) Pekan, (c) Johor Bahru, (d) Ampang and (e) Chanis

1399



1400

imply that the ML was the best method, followed by the
MOM.

Finally, we also suggested the weighted average
model, a model which assigns the inverse variance of
several methods as weights, to estimate the 7-year return
level. Based on the results, the weighted average model
was a suitable alternative for predicting the T-year return
level if there was no single method which was uniformly
best for all stations and if the analyst wants to take into
accounts more than one method to predict the return level.
In this study, the weighted T-year return level utilizes the
ML and MOM methods.

For application purposes, the prediction of extreme
rainfall events for several return periods provide important
and valuable information for the management and the
planning of water resources, especially for proper drainage
systems, reservoirs and ground surface waters and for
utilizations in agricultural sectors and socio-economic
activities. The information can be used to facilitate the
governments and other related parties in prioritizing water
resources in their efforts to reduce or control the risks of
large losses.

As mentioned previously, the estimation of GPD
parameters for extreme data are generally implemented
using two main approaches, parametric and non-parametric.
This study has focused on the estimation methods from the
fully parametric approach. In the last few years however,
there has been a shift from the parametric approach
for statistics of extremes towards a semi-parametric
approach for the estimation of the right-tail distribution.
In fact, several studies in semi-parametric approach have
provided interesting and meaningful results, especially in
determining the optimal threshold, which resulted in better
estimates and inferences. The semi-parametric approach
of the PDS method will be pursued in our future studies.
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