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KAVEH KIANI*, JAYANTHI ARASAN & HABSHAH MIDI

ABSTRACT

There are numerous parametric models for analyzing survival data such as exponential, Weibull, log-normal and gamma.
One of such models is the Gompertz model which is widely used in biology and demography. Most of these models are
extended to new forms for accommodating different types of censoring mechanisms and different types of covariates. In
this paper the performance of the Gompertz model with time-dependent covariate in the presence of right censored data
was studied. Moreover, the performance of the model was compared at different censoring proportions (CP) and sample
sizes. Also, the model was compared with fixed covariate model. In addition, the effect of fitting a fixed covariate model
wrongly to a data with time-dependent covariate was studied. Finally, two confidence interval estimation techniques,
Wald and jackknife, were applied to the parameters of this model and the performance of the methods was compared.
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ABSTRAK

Terdapat banyak model parametrik untuk menganalisis data mandirian seperti, eksponen, Weibull, Log-normal dan
gamma. Salah satu model tersebut adalah model Gompertz yang digunakan secara meluas dalam biologi dan demografik.
Sebahagian besar daripada model ini dikembangkan kepada bentuk-bentuk baru untuk menampung pelbagai jenis data
tertapis dan kovariat. Dalam makalah ini kebolehan model Gompertz dengan kovariat yang berubah dengan masa
dengan data tertapis dikaji. Selain itu, prestasi model ini pada kadaran data tertapis dan saiz sampel yang berbeza
dibandingkan. Juga, model ini dibandingkan dengan model kovariat tetap. Di samping itu, kesan menggunakan model
kovariat tetap untuk data dengan kovariat yang berubah dengan masa dikaji. Akhirnya, dua kaedah selang keyakinan,
Wald dan jackknife diaplikasikan pada parameter model ini dan prestasinya dibandingkan.

Kata kunci: Data tertapis kanan; jackknife; kovariat bergantung masa; model Gompertz

INTRODUCTION

The statistical analysis and modeling of lifetime data are
usually done by applying various kinds of parametric,
semi-parametric or non-parametric models. In this paper
the performance of the Gompertz model with fixed and
time-dependent covariate in the presence of right censored
data was studied. The Gompertz model was introduced
by Gompertz in 1825 as a model for human mortality.
Recently, it has found more application in fields such
as biology and demography. The hazard function of the

S(t)=exp [5(1 —e )}
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and the probability density function is:
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The properties of the Gompertz distribution are

Gompertz model is:
h(t) = Aexp(yt), t=0,1 >0,y > 0,

where is the non-negative continuous random variable
which denotes the individual’s life time. The scale
parameter is A and the shape parameter is y. The survivor
function of the model is

presented in Johnson et al. (1995). Recently many
authors have done studies on different characteristics
and statistical methodology of Gompertz distribution;
for instance, Makany (1991) and Chen (1997). Garg et
al. (1970) obtained maximum likelihood estimate (MLE)
of the parameters of Gompertz distribution. Wu et al.
(2004) proposed unweighted and weighted least squares
estimates for parameters of the Gompertz distribution
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under the complete data and first failure-censored data.
Fixed covariates are measured at the start of study and
stay constant over the study’s duration, for example,
gender or race. Time-dependent covariates vary over time
such as age and blood pressure. Following Kalbfleisch
and Prentice (1973, 2002), Lachin (2000) and Sparling
(2002) the history of a time-dependent covariate process
up to time may be incorporated into the model to assess
the effect of the covariate on the relative risk of the event
over time. Cox (1975) suggested using time-dependent
covariates in the proportional hazards regression models
and gave the partial likelihood analysis and also generated
the partial likelihood function for censored data. Petersen
(1986) introduced an algorithm for estimating parameters
of parametric models in the presence of time-dependent
covariates. Sparling et al. (2006) proposed a parametric
family of survival regression models for left, right and
interval-censored data with both fixed and time-dependent
covariates. Arasan and Lunn (2009) extended the bivariate
exponential model to incorporate a time-dependent
covariate. A complete review on the jackknife and its
application was done by Miller (1974). Also, Arasan and
Lunn (2008) investigated several alternative methods
of constructing confidence interval (CI) estimates for a
parallel two-component model with dependent failure and
a time-dependent covariate.

The objective of this study was to extend the Gompertz
model to incorporate a time-dependent covariate in the
presence of right censored data and to obtain a confidence
interval estimation method for the parameters of this model.
Firstly, we conducted a simulation study to evaluate the
performance of the model by checking the value of bias,
standard error (SE) and root mean square error (RMSE), of the
parameter estimates at different sample sizes and censoring
proportions (CP). Then, we assessed the performance of
two confidence interval estimation methods, the jackknife
and Wald, via a coverage probability study at different
nominal error probabilities and CP levels. In this research,
all the codes for the simulation studies were written in
FORTRAN® (FTN95) programming language.

GOMPERTZ MODEL WITH RIGHT CENSORED

DATA AND FIXED COVARIATE
The effect of covariates on survival time can be incorporated
to the hazard function by allowing the parameter A to be a
function of the covariates. Covariates can be either fixed
or time-dependent. For a data set with a fixed covariate x,
where i = 1, 2,..., n, the hazard function for i subject can
be expressed as;

h(t,) =M, exp(yt,)=exp(B, + Bx, +yt,),

where A, = exp (B,+ f,x,) and vector of parameters is
0=(f3,,3,.y). The parameters of this model can be estimated
by the method of maximum likelihood. If there are no
consored observation, then the likelihood function for the
full sample is:

i=1 i-1
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In order to incorporate right censored data to the
likelihood function we need to define a censoring indicator
variable denoted as S. For the i observation:

1, observation is not consored;
' |0, observation is right censored.

If #,is the observed survival time for the i” subject
then the likelihood function will be

H{f {8 ()

and log-likelihood function is:
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The first and second derivatives of the log-likelihood
function would be as follows:

= 'xf(s,w»m), j=0.1,
( ) j=0,1 k=01,

(rh( Z( )) o

Y

al()
P,
7(6)
aﬁ/aﬁk

>
E
oS,
b

ap,ay

a10)

ayw

The inverse of the observed information matrix, which
can be obtained from the second partial derivatives of the
log-likelihood function evaluated at f3,,, and ¥, provides
us with the estimates for the variance and covariance of 0.

The MLE of the parameters can be obtained by using
the Newton-Raphson iterative procedure.

SIMULATION STUDY AND RESULTS

A simulation study using 1000 samples each with n=50
and n=100 was conducted for this model for both censored



and uncensored observations and one fixed covariate. The
covariate values were simulated independently from the
standard normal distribution. The values of 0.04 ,0.02 and
0.03 were chosen as the parameters of 3, $, and y. Random
numbers, #’s, from the uniform distribution on the interval
(0,1) were generated to produce 7’s. The censoring times
or ¢’s were generated from exp(u) distribution, where
the value of ¢ would be adjusted to obtain the desired
approximate CP in the data. There are two possible types of
data. The first is when 7, <¢, which means 7,is uncensored.
The second is when ¢, > ¢ which means ¢, is censored. The
t‘s were generated by:

t, =lln[l—m].
LY A,

Table 1 shows the bias, SE and RMSE,~ SE* + bias® ,
of the parameter estimates at different CP levels and sample
sizes. CP means 10 percent of data are right censored. We
can clearly see that the bias, SE and RMSE values increase
with the increase in CP and decrease in sample size, which
means higher CP and small sample size make estimates less
efficient and rather inaccurate.

GOMPERTZ MODEL WITH RIGHT CENSORED DATA
AND TIME-DEPENDENT COVARIATE
In the model with time-dependent covariates, we are
dealing with covariates whose value changes over time
and not fixed throughout the study. Let x,,; represent a
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time-dependent covariate which changes over update
times a, where i=12,...,nandj=0,1,...., k. Here a,
is the time origin or a, = 0. The hazard function can be
expressed as:

ht

Xaij ) = )\'ij exP(Yti ) = exp(Bo + I3lxaij +V1, ) .

i

It assumed the x , follows a step function which means
within the interval a; to Ay X stays constant at X, and
changetox . ata,.  in the following interval. The
vector of parameters is 6 = (3, B,, ).

The likelihood and log-likelihood functions for both
censored and uncensored observations are given by:

Let us consider this model with at most two levels of
the covariate for each subject, so j = 0,1. Here, in order to
incorporate two levels of the covariate to the likelihood
function we need to define a covariate updating indicator
variable denoted as L. For the i observation:

1, covariate is updated;
i 0,

covariate is not updated.

Then the hazard function before and after updating
is:

X, ) =exp(B, +B.x,, +71,),

%, ) = exp(Bo +B,x,, +ytl,).

TABLE 1. Bias, SE and RMSE of the estimates for fixed covariate model

Bo 3 *
CP n=>50 n=100 n=>50 n=100 n=>50 n=100
0 -0.0733  -0.0413 -0.0029  -0.0009 0.1094 0.0543
10 -0.0784  -0.0439 -0.0025  -0.0013 0.1223  0.0588
20 -0.0788 -0.0471 -0.0042  -0,0013 0.,1258  0.0649
Bias 30 -0.0809  -0.0473 -0.0032 -0.0015 0.1358 0.0712
40 -0.0843 -0.0496 0.004T7  -0.0032 0.1410  0.07T94
50 -0.0949  -0.0532 00066 -0.0070 0.1665 0.0876
0 0.2091 0.1442 0.2193 0.1429 0.1890  0.1204
10 0.2225 0.1522 0.2292 0.1497 0.2243 0.1372
20 0.2364 0.1636 0.2504 0.1624 0.2592 0.1678
SE 30 0.2553 0.1769 0.2701 0.1761 0.3192  0.2084
40 0.2793 0.1925 0.2909 0.1911 0.3973 0.2673
50 0.3261 0.2115 0.3297 0. 2080 0.5430  0.3408
0 0.2216 0.1499 0.2193 0.1429 0.2184 0.1321
10 0.2359 0.1584 0.2292 0.1497 0.2555 0.1492
20 0.2492 0.1702 0.2504 0.1624 0.2881 0.1799
RMSE 30 0.2679 0.1831 0.2702 0.17T61 0.3469 0.2202
40 0.2918 0.1988 0.2910 0.1911 0.4216  0.2789
50 00,3396 0.2181 00,3298 0,2081 0.5680 0.3519
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So, the log-likelihood function will be:

1(0)=3 s

i=1
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The first and second derivatives of the log-likelihood
function would be as follows:

) E(‘ +(1 —L){A"‘ -, (t,)}_‘—[‘ {x ~h, (a,)+h,(a,)=h, (1, )H
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M = E(l,s, (x"vI —x”w)+s'x“’” +(1 -1 )x% {w}

Y

The MLE of the parameters can be obtained by using
the Newton-Raphson iterative procedure.

SIMULATION STUDY AND RESULTS

A simulation study using 1000 samples each with n=50
and n=100 was conducted for this model for both censored
and uncensored observations and one time-dependent
covariate. Two levels of the covariate were simulated
independently from the standard normal distribution. The
values of 0.04,0.02 and 0.03 were chosen as the parameters
of B, B,and y. Random numbers, u’s, from the uniform
distribution on the interval (0,1) were generated to produce
t’s. The censoring times or ¢’s were generated from exp(L)
distribution, where the value of p would be adjusted to
obtain the desired approximate CP in the data. The update
times or a,’s were generated from exp(v)distribution
where the value of v can be adjusted to obtain larger or
smaller values of a, . Here v was chosen as 1. There are
four possible types of data. The first is when #, < ¢, and
t, < a, which means the survival time is uncensored and
covariate is not updated. The second is when 7, < c,and ¢, =
a, which means survival time is uncensored and covariate
is updated. The third is when ¢, 2 c,and ¢, < g, or survival
time is censored and covariate is not updated and finally,
t.2 c,and ¢,z a, which means survival time is censored and
covariate is updated. The 7,°s were generated by:

if u, zexp{h[l—exp(yan)]} then, 7, =lln[1
14

_ylnui]
'}/ 9

i0

if u, <exp {h [1 —exp ()/a,., )]} then,
Y

t,=—In
Y A

1 [lm-%owwhqj+luwpﬁqﬂwl
il

The simulation study was done to assess the bias, SE
and RMSE of the estimates at different CP levels and sample
sizes. From Table 2 we can clearly see that the bias, SE and
RMSE values increase with the increase in CP and decrease
in sample size.

Table 3 gives RMSE values of the estimates when a
fixed covariate model was fitted wrongly to a data set
with time-dependent covariate. The results indicate that,
when the interval is very wide (close), which means at
small (large) value of v, the RMSE values between time-
dependent covariate model and fixed covariate model are
very close. This is expected because as intervals become
very wide (close), the time-dependent covariate become
closer to a fixed covariate. But, when the interval takes
a medium size, RMSE values of the wrong model increase
substantially. As a result, if a time-dependent covariate
data is fitted to a fixed covariate model, the accuracy and
efficiency of the estimates will be highly affected, thus the
model will be completely unreliable.
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TABLE 2. Bias, SE and RMSE of the estimates for time-dependent covariate model

Bo B 5
P n=al n=100 n==50 n=100 n=>50 n=100
0 -0.0732  -0.0406 -0.0033  -0.0006 0.1088  0.0534
10 =0.0792 =0.0428 =0.0017 0.0002 0.1223 0.0572
20 -0,0785  -0.0453 -0,0013 00005 0.1245 0.0624
Bias 30 00805 -0.0462 -0.0037  -0.0002 0.1345 0.0688
40 -0.0825 BRI -0.0135 0.0002 01363 D.07TTE
50 -0,0891  -0.0508 -0,0165 00018 0.1547  0.0336
0 0.2074 0.1448 0.2154 0.1374 0.1905 0.1197
10 0.2207 0.1522 0.2253 0. 1458 0.2253 0.1362
20 0.2206 0.1634 0.2439 0.1563 0.2610  0.1665
SE 30 0.2557 0.1756 0.2680 0.1715 0.3177  0.2067
40 0.2806 0.1904 0.2841 0.1851 0.3989  0.2603
50 0.3229 0.2093 0.3125 0.2024 0.5603 0.3393
0 0.2200 0.1503 0.2154 0.1374 0.2194 0.1311
10 0.2345 0.1581 0.2253 0.1458 0.2564 0.1477
20 0.2479 0. 1696 0.2439 0.1563 0.2892  0.1778
RMSE 30 0.2681 0.1816 0.2681 0.1715 0.3450  0.206T
40 0.2925 01967 0.2841 0.1851 0.3989 02717
50 (.3350 0.2154 0.3129 0.2024 0.5603  0.3494

TABLE 3. RMSEs of wrong and correct fitted model to time-dependent data

o= (L05 =250 =13
CP Wrong  Correct Wrong Correct Wrong  Correct
Bo (U8 i 016G Z.I7T .15 016G 016G
10 & 0.16 0.15 2.39 0.15 0.16 0.15
B 0.14 0.15 2.52 0.16 0.14 0.15
Ao 0.18 0.18 4.21 0.17 0.19 0.18
30 M 0.18 0.18 3.89 0.17 0.23 0.18
B 0.21 0.21 6.15 0.20 0.26 0.21

CONFIDENCE INTERVAL ESTIMATES

In this section we compared two methods of constructing
confidence intervals for the parameters of the time-
dependent model. The first method is asymptotic normality
confidence interval or the Wald interval and the second
is alternative computer based technique known as the
jackknife. For discussions in following sections we will
use 3, as our example and similar procedure would then
apply for the rest of the parameters.

ASYMPTOTIC NORMALITY
CONFIDENCE INTERVAL (WALD)
Let 6 be the maximum likelihood estimator for the vector
of parameters 6 and [ (0) the log-likelihood function of 6.
Following Cox and Hinkley (1974), under mild regularity
conditions,  is asymptotically normally distributed with
mean 6 and covariance matrix I'(6) where 1(0) is the Fisher
information matrix evaluated at the true value of the 6. The
matrix /(6) can be estimated by the observed information
matrix / (6). The var(f ) is the (2,2)" element of matrix
10).1¢ Z . is the (1-a/2) quantile of the standard normal
2

distribution the 100 (1- a)% confidence interval for

B, is:

B~z \var(B,)<B <B +z . var(B,)

2 2

JACKKNIFE CONFIDENCE INTERVAL

Let us say that Bl is the MLE of the parameter 3, obtained
from the original dataset x=(x,, x,.,..., x ). The jackknife
estimate of bias and SE are computed from the jackknife
samples. For a data set with n observations, the i
jackknife sample is defined to be x with the i observation
removed. So, the jackknife sample would consist of (n-1)
observations, all except the i observation.

x(i)z(xl,xz,...,xi_l,xl.ﬂ, ...,xn).

Let f 1, be the MLE of the parameter based on the

jackknife sample, then, the new estimate, f ack) is defined
by

B(jact -6, _(”_1)(61(.) ‘Bl)’

where

The jackknife estimate of the SE is:

n

.. (él)=\/”—'12(él(,.)—r§,(.))z-

n i=1
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If ¢
(17,14)
distribution at (n-1) degrees of freedom, the100(1-a.)%
confidence interval for 3 is:

is the (1- a/2)quantile of the student’s t

A

Bl(/ack) _t( a

1-—,n-1

JS{E\M (Bl ) <Bs é](jack)

+t( o I]@ia(‘k (ﬁl)

COVERAGE PROBABILITY STUDY AND RESULTS

A coverage probability study using 2000 samples each
with n=20, 30, 40, 50, 100, 150, 200, 250 and 350 and
two CP levels of 10% and 30% was conducted to compare
the performance of the confidence interval estimates at
different sample sizes and CP levels. The nominal error
probabilities were chosen as 0.05 and 0.1. Left and right
error probabilities were estimated and total error probability
was calculated. Following Arasan (2006), the estimated
left(right) error probability is calculated by adding the
number of times the left (right) endpoint was more (less)
than the true parameter value divided by the total number
of samples, N. Following Doganaksoy and Schmee (1993),
if the total error probability is greater than o + 2.58 x
SE (&), then the method is termed anti-conservative; if
the total error probability is less than o + 2.58 x SE (&),
then the method is termed conservative, and if the larger
error probability is more than 1.5 times the smaller
one, then the method is termed asymmetrical. Standard
error of estimated error probability is approximately,

SE(G)=4Ja(l-a)/N.

The overall performance of the different methods of
constructing confidence intervals are judged based on
the total number of anti-conservative, conservative and
asymmetrical intervals. Also, behavior of the methods
at different nominal error probabilities o and CP levels is
of interest. By comparing the two methods of computing
confidence interval estimates, we found that Wald method
gives better interval estimates of 3 and jackknife method
gives better interval estimates of 3 and y . Overall, the
jackknife method seems to perform better than the Wald
method.

Tables 4 and 5 show estimated left, right and total
error probabilities of parameters at different sample sizes
and CP levels for Wald and jackknife methods where the
nominal error probability a is 0.05 . The estimated total
error probabilities of both methods are close to the nominal
error probability but some intervals have asymmetric left
and right estimated error probabilities.

Table 6 shows the summary of the results obtained
from the coverage probability study. The jackknife method
produces fewer anti-conservative intervals compared to the
Wald method. However, it generates many conservative
intervals whereas the Wald method does not produce any
conservative interval. Having many conservative intervals
is not very desirable because it produces intervals wider
than they need to be. The Wald also produces many
asymmetrical intervals. Both methods appear to perform
slightly better at a = 0.05 and also at higher CP level.

Tables 7 and 8 show the total conservative, anti-
conservative and asymmetrical intervals at .= 0.05 level.
We can clearly see that a large portion of the asymmetrical
intervals are produced by 3 and y. Also anti-conservative
intervals are produced by the Wald method only for 3, and

TABLE 4. Estimated error probabilities of Wald method (a = 0.05)

Lol error Right orror Total error
I CP Ly CP =30 CP L0} CP =30 CP L0} CPr =30
20 [ARRRE:] Oyl LN 15 0032 LR 5 35 =
A0 [AERR . 0025 LR | Ch 005G 0052 WENLEY
10 [ANARE. 0.024 [N 1N 0035 0,047 0.0ha
50 Ly 0Ly 0.035 LG 0,051 0.0nhE
e LM} 0.016G (020 L O30 L0 (rOG IR BT
1500 0.022 0022 L 00 L 050 [N | 0051
20000 0,015 0.022 0034 0.028 L0553 0050
250 (AN NN ] 2 [N 49 a2 055 DG5S
A50 V20 0021 (LN 0027 0051 =
20 028 [N RpELE] [N .9 g2 LGS 0071
40 LN R 45 [ h0xtl a2 LGS G2
10 LR (RN hixtl 000D RIS (WY
ol O, 025 2= LR kil L1 OG0
i L) h2e LI b, 25y 2o 0057 [N AT
1500 LR LN 03020 LN N] 2= 0 G 0=
2000 L02E LN B b 451 h0y23 0.021 LR AY | Cr s
250 hiy23 0022 L 0y22 1 LR E 5 1
A5 L0227 (30030 L0¥27 Lr2s 00154 LA |
20 [N [RELNE 02 Crimrl Ch Oy =1
1N LONGET 0070 L0¥25 LA Cr OG5 0074
10 Ch Oy (OG22 [ENNINE 0005 0,073 0U0GT
50 MG 006G L O30 0005 OLOGT (W RLET.
=y LM} AN E B LG 010 0005 0.nnz2 (RN IEY |
1500 0.0An 0.l 0= 0.012 L0553 (RN
2000 LA L0385 .0l 0ol 0,051 0045
250 0.0d2 0.0349 0.007T LRN ) 050 0.nn2
A50 013 INNEN LR D16 (056G 0057
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TABLE 5. Estimated error probabilities of jackknife method (o = 0.05)

LBl error Right error Postanl error
n CP=10 P e 230 CP=10 C P =30 C P e 1D C P =0
0 (VX TEy 0005 [INIE R 0044 0050 [ANIEED
30 COMS C3.0MDA [N E B 0.0a7 0051 sl
A0 LT 3 M [N 4 (RN 18] o043 (AR E 5
o0 O, O LT (AN o042 (RN R 1] [EN#E k2]
o 1Oy Chorney arl 1 Lss [N E T [ B 05T
150} LD 0.5 L0322 L0225y [ERNE B (AR E
200 0017 0,017 003G 00534 0,053 0,051
250 LG 0019 0L 0RG 0032 o052 0051
S350 0T 0.021 [ Y 00285 S0 AR E 2]
200 004 0y 0012 (RN il 0,026
an 0012 0021 0017 0,019 0.020 0,010
Al LI NS 005 ols hils 0iril LR
il 025 0022 0.022 2] [EENE 5 0057
&1 (RRLN] 0,016 0017 0019 0,021 0,035 0,058
150 001G 0.019 0L 030 0.023 LG 0.042
2000 21 = o2s 0022 oA [AREEIN]
260 0,022 0.0z 0,024 0.018 0,046 0,055
ano 0L 20 0.0zl 0,027 0,028 007 0.0
20 AN E B LR K1 o1l Lty (L0506 a5
30 0.y LN A1 5 (AR NN 0oly 0053 053
A0 0034 0034 0023 0022 0,057 0,056
50 L5 0033 [UN ) 0023 L 0GE AN STH
¥ 1Oy LR b LR ] [ERAE N 0225y M7 055
150 0,019 0,020 0046 0037 0065 0,066
200 LEN N 0.0zl (AR 0035 005G 005G
250 LR P 0.022 ol LR A AR ST
50 0,027 (3 020D [N 18] [ERIE N RN EETEY [RRAIEIN]

TABLE 6. Summary of the performance of Wald and jackknife methods

Conservative Anti-conservative Asvimmetrical
i P Wald  Jackknife Wald  Jackknife Wald  Jackknife
005 10 0 4 T ) 19 15
40 ] 2 5 1 13 14
0.1 10 ] o Fi 0 17 16
S0 ] 0 T 0 15 12

TABLE 7. Performance of Wald method at . = 0.05

CP=10 CP=30

Conservative  Anti-conservative  Asymmetrical Conservative  Anticonservative  Asymmetrical
n By B v B B Y B B B B v B B L T
a0 £ 3 * * E3 3 * * E
a0 * * * * * *
40 * * * * * *  *
5{] * * * * *
100 * * *
150 L] o o
200 o . -
250 * 4 L
35u * * * *
Subtotal o0 0o o 3 4 g8 2 9 o0 0 0 1 4 3 1 9
Total 0 T 19 0 i) 13

TABLE 8. Performance of jackknife method at o = 0.05
CP=10 CP=30

Conservative  Anti-conservative  Asymmetrical Conservative  Anti-conservative  Asvmmetrical
n ;'fn ﬁ] B ."5‘] 3| di ."j‘n ."’f| g ."in .'3| i) _."i" 3[ ¥ ..ij 3| ¥
0 ® * ¥ * * *
a0 * * * *
A0 " o L o ] |
ab ¥ * *
]_m * & *
150 L] * L] ¥ & *
(M) * * *
250 L o L L o
350 * * *
Subtotal o4 0 0 0 5 9 1 5 0o 2 0o 0 0 1 H G

Total 4

an
—
an
[ 3%
=
=
_—
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FIGURE 1. Estimated error probabilities of Wald and jackknife methods at a. = 0.05
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FIGURE 2. Estimated error probabilities of Wald and jackknife methods at o = 0.1



480

for v small sample sizes (<50). For the jackknife method,
anti-conservative intervals is observed for large sample
sizes (>100). If we look at Figures 1 and 2, for 8, the
jackknife method works better for all sample sizes, since
most of the estimated left and right errors are approximately
equal and are closer to a/2 . For ﬁo, the Wald method is
slightly better especially for small sample sizes (<50).
Finally, for y, the jackknife method performs better than
the Wald method for small and large sample sizes and very
well for medium sample sizes (n=50, 100)

CONCLUSION

In this paper the MLE for the parameters of the Gompertz
model with both fixed and time-dependent covariate
were obtained. It was shown that the bias, SE and RMSE
increase substantially when CP increases and sample size
decreases. Also, it was shown that the jackknife method
gave better interval estimations for the parameters than
the Wald method. The Wald method is known to produce
many asymmetrical intervals (Arasan & Lunn 2008).
So, other confidence interval estimation methods like
bootstrap-t confidence interval could also be developed
for the parameters of this model. Both asymptotic and
alternative confidence interval estimations should be
investigated. The time-dependent model discussed here
should be investigated further to include other types of
censored data such as interval and doubly interval-censored
data. The model could also be extended to include more
covariates to see its performance when dealing with more
or different types of covariates.
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