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Multivariate Relationship Modeling using Nested Fuzzy Cognitive Map
(Model Hubungan Multivariasi Menggunakan Peta Kognitif Kabur Tersarang)
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ABSTRACT

Soft computing is an alternative to hard and classic math models especially when it comes to uncertain and incomplete 
data. This includes regression and relationship modeling of highly interrelated variables with applications in curve 
fitting, interpolation, classification, supervised learning, generalization, unsupervised learning and forecast. Fuzzy 
cognitive map (FCM) is a recurrent neural structure that encompasses all possible connections including relationships 
among inputs, inputs to outputs and feedbacks. This article examines a new methods for nonlinear multivariate regression 
using fuzzy cognitive map. The main contribution is the application of nested FCM structure to define edge weights in 
form of meaningful functions rather than crisp values. There are example cases in this article which serve as a platform 
to modelling even more complex engineering systems. The obtained results, analysis and comparison with similar 
techniques are included to show the robustness and accuracy of the developed method in multivariate regression, along 
with future lines of research. 
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ABSTRAK

Pengiraan lembut adalah alternatif kepada model matematik klasik dan sukar terutama apabila ia melibatkan data 
yang tidak menentu dan tidak lengkap. Ini termasuk regresi dan pemodelan hubungan pemboleh ubah yang sangat 
berkait dengan aplikasi dalam penyesuaian lengkung, interpolasi, pengelasan, pembelajaran yang diselia, generalisasi, 
pembelajaran tanpa penyeliaan dan ramalan. Peta kognitif kabur (FCM) merupakan struktur neural berulang yang 
merangkumi semua kemungkinan sambungan termasuk hubungan antara input, input kepada output dan maklum balas. 
Artikel ini mengkaji kaedah baru untuk regresi multivariasi tak linear menggunakan peta kognitif kabur. Penyumbang 
utama adalah penggunaan struktur FCM bersarang untuk menentukan kelebihan pemberat dalam bentuk fungsi bermakna 
dan bukannya nilai-nilai bersih. Terdapat kes-kes contoh dalam artikel ini yang berfungsi sebagai satu platform untuk 
pemodelan sistem kejuruteraan yang lebih kompleks. Keputusan yang diperoleh, analisis dan perbandingan dengan 
teknik yang sama disertakan untuk menunjukkan keberkesanan dan ketepatan kaedah yang dibangunkan dalam regresi 
multivariasi bersama-sama dengan hala tuju untuk penyelidikan yang akan datang. 

Kata kunci: pengaktifan neural; peta kognitif kabur tersarang; regresi

INTRODUCTION

NEURAL REGRESSION USING FUZZY COGNITIVE MAP (FCM)

Thorough understanding about a system’s behaviours is 
fundamental to reliable modelling and forecast. The notion 
of regression or in broader scope relationship modelling, 
is concerned about discovering rules which govern 
relationships among system variables. However, in most 
cases one has to consider all variables concurrently which 
lies in multi-dimensional or multivariate regression. On 
the other hand, multivariate regression is barely performed 
using hard mathematics as level of complexity exponentially 
increases with number of variables. Alternatively, the state 
of the art in modelling and forecast is based on utilization 
of artificial neural networks (ANN) (Darbellay & Slama 
2000), genetic algorithm (Pai & Hong 2005), fuzzy and 
hybrid methods (Abraham & Nath 2001; Bartkiewicz 2000; 
Chang et al. 2011) and other soft approaches. 

	 Smaller and mainly linear problems could be modelled 
using single-layer perceptron (Motlagh et al. 2013). 
Single hidden layer feed-forward networks are also used 
for modelling and forecasting mainly using standard or 
enhanced back propagation rule, e.g. using conjugate 
gradient algorithm (GCA) (Abraham & Nath 2001). 
However, recurrent models such as Hopfield (Khan & 
Ondrůšek 2001) and fuzzy cognitive map (FCM) (Kosko 
1996; Motlagh et al. 2012a) became more popular as 
more relationship configurations could be obtained, a task 
math models barely accomplish. Overall, numerical and 
neural models provide easier implementation and more 
information especially about relationships among variables 
themselves. Another advantage of neural models is based 
on efficient utilization of principal component analysis 
(PCA) (Taylor et al. 2006), and exploratory factor analysis 
(EFA) (Santin 2011), both on the assumption of linearity of 
observed variables and other variable reduction techniques. 
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	 Fuzzy cognitive map (FCM) is a powerful inference 
mechanism employed in two distinct domains: Control 
systems (Motlagh et al. 2012) and system modelling 
(Motlagh et al. 2013). In modelling, FCM is employed to 
extract regression models or relationships among known, 
partially known and even unknown factors contributing 
to a single complex system. FCM is advantageous in 
implementation of causal relationships within inputs, 
outputs or a combination of them, a feature ANN does 
not fully provide. An n-node FCM is a recurrent neural 
network where each node (so called concept) Cj, Cj ∈ {C1 
… Cn}, is the output of some or all other nodes Ci, Ci ∈ 
{C1 … Cn}, i≠j, i.e., n interrelated single-layer (n-1)-node 
perceptron networks. The goal is to train the matrix of edge 
weights (or FCM events) in such a way to hold the FCM at 
convergence (1). In other words, if a neutral activation 
function is employed (i.e. linear function with unit slope 
where each net weight is directly assigned to output 
without squashing), a product of the 1×n state vector of 
nodes C={C1 … Cn} at cycle τ (C(τ)) and the n×n matrix 
of weights W, should show the same values for the next 
cycle (C(τ+1)=C(τ)). To obtain W as a non-identity matrix, 
initial weights must start from zero while the perceptron 
training rule ((2) with learning rate α) applies to all wi,j ∈ W, 
provided i≠j. The matrix W is called the adjacency model 
which describes all possible relationships among variables, 
including input-output relationship as well as relationships 
among inputs themselves and feedback relationships.

	 C(τ+1) = C(τ) = C(τ) × W (τ).	 (1)

	 	 (2)

	 Cj = C × Wj,   wjj = 0.	 (3)

	 Upon sufficient training, matrix W simply provides an 
(n-1)-dimensional linear regression model for all variables 
assigned to FCM nodes, i.e. each variable (node Cj) is a 
product of other variables (nodes Ci, i=1…n, i≠j) which 
influence on Cj through respective links’ weights wi,j being 
the jth column of W (Wj) as shown in (3). W is also called 
the relationship model of all variables (Motlagh et al. 
2013a) with wide range of applications especially when 
it comes to multivariate systems. However, an important 
issue is that although variables do not need to be linearly 
independent as opposed to other state space models, 
perceptron learning is limited to single-trend or single-
behaviour systems, i.e. extents of impacts of variables on 
a specific output must be linearly independent. Therefore, 
when it comes to non-linear and multi-behaviour systems, 
utilization of nonlinear rules such as Hebbian rule is more 
viable. 
	 Nonlinear Hebbian rule facilitates learning of multi-
trend behaviours. Of the fundamental ideas in biological 
learning, Hebb law has become an established learning 
method in artificial neural networks (NN) when it comes 
to distinct patterns of inputs, used in classification, 
memory and retrieval systems. The idea is to strengthen 

the connection between neurons i and j, if neuron i is near 
enough to excite neuron j making it more sensitive to such 
stimuli. Therefore, a learning rate α is multiplied by the 
values of the input and output neurons to be added to the 
current weight of the link connecting input to the output. 
On the other hand, to prevent weights from indefinite 
growth, a decay factor φ is multiplied by the connecting 
weight and the value of the memorized output to mimic 
the phenomenon of forgetting in biological brain. Equation 
4 (Negnevitsky 2005) shows the concept of Hebbian rule 
for weight update from iteration τ to τ+1 in a typical feed 
forward neural network.

	 	 (4)

	 	 (5)

	 The basic rule in (4) needs modifications in recurrent 
models such as FCM depend on several criteria such 
as sequence of activation of neurons and selection 
of active nodes. Kosko proposed the initial model 
known as differential Hebbian (DH) model (Dickerson 
& Kosko 1994) in (5). DH was then improved into 
balanced differential algorithm (BDA) (Vazquez 2002). 
In BDA, weight update depends on values of selected 
FCM nodes which are acting at the same time. However, 
major advancements were related to non-linear Hebbian 
learning (NHL) (Papageorgiou et al. 2003) and active 
Hebbian learning (AHL) (Papageorgiou et al. 2004). NHL 
is based on the premise that FCM graph has to be updated 
synchronously whereby all neurons (state vector of nodes 
or concepts) are updated at the same time. In contrast, AHL 
involves the sequence of active concepts and updates new 
weights of all concepts as influenced by the active concept 
at any time. A summary of the approaches to FCM training 
is given in Motlagh et al. (2013) along with example cases. 

NATURAL INFERENCE METHODS 

A critical design element in FCM-based regression and 
generalization is about type of employed neural activation 
function such as sigmoid-based and hard limiters. As 
described earlier, FCM inference is an iterative process 
of aggregation of net weights and then activation. Let τ 
be the current iteration, Cj be the output concept node, 
Ci and i ∈ {1…n} be the inputs, wij and i ∈ {1…n} be 
respective links’ weights and f be the employed function 
(here symmetric sigmoid with steepness λ), then Cj at 
iteration (τ +1) could be obtained from (6) (Kosko 1996). 
An advanced activation model is also presented in Motlagh 
et al. (2012a) as given in (7). The improvement made in 
the function f (7) leads to smoother convergence due to 
squashing net weights about own nodal values rather than 
a fixed point (as compared against f in (6)). 
	 Also as described, apart from inference, FCM requires 
weight training to adapt weights of graph edges. There are 
various supervised and unsupervised training techniques 
such as genetic-based (Stach et al. 2005) and Hebbian-
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based (Papageorgiou & Salmeron 2012), respectively. 
Likewise, the two fundamental and yet very practical 
learning models are based on supervised perceptron (2) 
and unsupervised differential Hebbian rule (5). However, 
experiments have proven that each type of activation 
function leads to a different regression model (due to 
solving for a different adjacency matrix W). In other words, 
the linear regression model (3) finds different solutions 
depend on the employed activation function. The problem 
is addressed as the lack of a unique (natural) activation 
function that leads to a realistic regression model for each 
output or a realistic relationship model of all concepts 
within an entire FCM network. 

	    where 

	 f(T) =   	  (6)

	   and	

	 γ∈ (0, 1).	 (7)
	

	 Accordingly, natural activation is proposed (Motlagh 
et al. 2013a) to replace the many choices of activation 
functions with unique functions which come from the 
natural behavior of each variable within a given system. 
The philosophy is to remove activation function from 
output (a property incorporated into all types of ANN 
structures) and instead add unique activation functions to 
each individual graph edge. The edge functions, such as 
polynomial and trigonometric are therefore to be uniquely 
obtained regardless of the employed training technique. 
To introduce the idea, let us first consider a conventional 
neural structure as shown in Figure 1(a) and (8) where 
aggregated net weight is squashed and then assigned to 
the output. By applying a reverse order, activation could 
be performed prior to aggregation of net weight (Figure 
1(b) and (9)) and since there is a one-to-one relationship 
between the output and a specific input, the respective 
edge function would be unique, provided the net weight 

is directly assigned to the output (wj=1) or in other words, 
neural activation function in Figure 1(a) to be removed. 

	 Cj = 	 (8)

	 Cj = 	 (9)

	 Let function fij be a linear polynomial function 
connecting node Ci to Cj. Accordingly, many classic 
regression or heuristic search algorithms could be 
suggested to obtain functions f1j … fnj by solving for 
polynomial parameters with any desired degree. For 
example, as one of the fundamental training techniques, 
(10) represents a parallel perceptron rule with learning 
rates α, β, σ to tune parameters a, b and c, of a quadratic 
polynomial connecting Ci to Cj, that is: Cj = fij(Ci) = aij + bij 
Ci + cij Ci

2. The degree of the polynomial (quadratic, cubic, 
quartic) is directly proporonal to the desired accuracy while 
it is inversely related to the computational cost of training. 
However, error-based training such as perceptron rule is 
less effective when it comes to higher degree polynomials. 
This is due to the fact that error comes from different 
sources associated with polynomial power series which 
may result into ambiguity. 

	 	 (10)

	 In contrast to local search, global techniques such as 
the genetic algorithm (GA) ensure complete search, and 
therefore have been traditionally used to fit polynomial 
curves (Gulsen et al. 1995; Karr et al. 1995). A GA-based 
formulation of the problem is presented in Figure 2 while 
(11) and (12) represent the kth GA chromosome chk of a 
population N and the respective cost function. It must be 
noted that the GA representations are related to the example 
of quadratic functions where the objective is to tune 
polynomial parameters A, B, C, for all n2 possible graph 
links in an n-node FCM. Accordingly, chk includes n2×3 

	  (a) 	 (b)

FIGURE 1. (a) Neural activation vs (b) natural activation



1784	

encoded parameters as also shown in Figure 2 to represent 
edges as optimized quadratic polynomials. Here GA aims 
to hold FCM at convergence. Accordingly, (12) is used as 
the cost function, where Cj equal to desired Cj(desired) serves 
as the fitness measure. The algorithm then continues for 
generations until global solution is sought. GA warrants 
a global solution with relatively acceptable accuracy but 
high computational cost which makes it not suitable for 
real-time applications.

	
	 (11)

	 	 (12)

where, fij(Ci) = Aij + Bij Ci + Cij Ci
2

expressed as a linear function of other variables (entire 
state vector C). The relationship model called the adjacency 
model is derived in form of an adjacency matrix W which 
holds FCM at convergence. It was also discussed that by 
retaining wij=0 for i=j, the main diagonal of adjacency 
matrix could be kept to zero for W to be non-identity. The 
idea of natural activation suggests application of neutral 
neural activation at output while FCM links themselves 
could be tuned in form of functions, such as polynomial. 
Accordingly, W would not be a matrix of crisp values but 
a matrix of functions which would fully describe natural 
relationships among system variables. Accordingly, in 
contrast to conventional NN-based regression which 
only suggests linear models, i.e., (3), here, relationship 
between every pair of nodes could be expressed in the 
form of non-linear functions of any desired type, such as 
polynomials. In addition, each node still can be defined as 
a function of more than one other node, that is in common 
with classic neural models in the literature. To materialize 
the notion of natural inference, in this section, nested-FCM 
structure is described as an effective alternative to other 
implementation techniques as described in the previous 
section. 
	 To begin, Figure 3 provides a clear implementation 
of a 4-node FCM with natural activation (Figure 3(a)) and 
in form of its equivalent nested-FCM (Figure 3(b)). A link 
fij (such as f12) which in this case needs to be obtained in 
form of a cubic polynomial function, is broken down into 
four links (or a larger set of nested branches if higher 
degrees were desired) with scalar weights a, b, c and d. 
Accordingly, each node (xi) is replaced with a set of nested 
nodes which follow the power series of that node 1, xi, xi

2 
and xi

3. It must be noted that, for the sake of brevity, the 
causal relationships between x1 and x4, and between x2 
and x3, are removed in the nested model. It must be also 
noted that concept nodes (C1 to C4) are mapped to system 
variables (x1 to x4) if one attempts to review (1) through 
(12). Nested-FCM is advantageous as it can be used along 
with simple conventional weight training techniques, such 
as the standard perceptron rule (2) and differential Hebbian 
rule (5) for supervised and unsupervised scenarios. 
Training is relatively fast and accurate without involving 
complex (such as least square error) and bulky (such as 
GA) algorithms.
	 An important advantage is adaptability to principal 
component analysis (PCA) (Taylor et al. 2006), and 
exploratory factor analysis (EFA) (Santin 2011) and other 
variable reduction techniques, to reduce the size of nests 
without sacrificing higher degrees. For example, nests 
can start with a higher degree (six-node nests 1, xi, xi

2, 
xi

3, xi
4and xi

5, for a quantic representation) while a simple 
covariance filter can be used to remove nested nodes 
which are less influential. Integration of more complex 
and heterogeneous functions is also allowed. A series of 
trigonometric (sin x), logarithmic (log x) or exponential 
(ex) power series assigned to nested nodes will lead to the 
respective functions along connecting edges.

FIGURE 2. Solution for an n-node FCM consists 
of 3n2 encoded values 

 
	 	 (13)

	 There are other classic regression models such as 
spline method (Bianco 2009), Lagrangian, least square 
and maximum likelihood (Espey 2004), smooth transition 
regression (STR), threshold regression (TR), and switching 
regression (SR). Probabilistic such as Bayesian (Cottet 
& Smith 2003) and grey methods (Yao et al. 2003) have 
been also employed. A common regression modeling is 
based on utilization of least square error principle (13). 
However, it is considerably bulky when it comes to 
multivariate systems and or higher polynomial degrees 
(from quadratic (13) to cubic). In the next section, we 
introduce practical applications of natural inference using 
a new strategy with minimal computation cost known as 
nested structure along with the obtained results, related 
analysis and comparison.

NESTED-FCM STRUCTURE 

FCM provides a relatively fast yet reliable linear regression 
model as given in (3), where each state Cj could be the 
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EXAMPLE CASE OF A KINEMATIC MODEL

A kinematic model of a projectile with negligible size 
is concerned with initial velocity of 2 m/s at -20° with 
horizon, on planet Mars with no air resistance and gravity 
of gm=3.711 m/s2. The classic (14) through (19) calculate 
position, velocity, and acceleration of the object as 
functions of time (t) along the two dimensions X (forward) 
and Y (downward). This example case is adapted from 
(Motlagh et al. 2013a) to describe the strategy for deriving 
quadratic polynomials along with additional analysis for 
comparison of results with other regression tools. 

	 x(t) = vx0 t = 1.879 t.	 (14)

	 vx(t) = vx0
 = 1.879.	 (15)

	 ax(t) = 0.	 (16)

	 y(t) = vy0
 t +   t2 = 0.684 t + 1.856 t2.	 (17)

	 vy(t) = gm t = 3.711 t.	 (18)

	 ay(t) = gm = 3.711.	 (19)

	 To train respective links of a nested time concept 
(1, t, t2), a time series dataset (P) is obtained using the 
above math model as given in Table 1, where each record 
contains values of {t, x, vx, ax, y, vy, ay} which represent 
sampling time, position, velocity, acceleration along X-axis 
and position, velocity and acceleration along Y-axis, 
respectively. It must be noted that there is some noise 
purposely injected into the data by rounding all values up 
or down to three decimal points. Upon perceptron training, 
with minimal computation cost, the respective weights 
matrix (wtrain) is obtained which connects the nested concept 
time (t) to the kinematical variables in Table 2.
	 Equations 20 to 25 showed the obtained results for 
the polynomial functions of the kinematical variables 

FIGURE 3. (a) FCM structure with natural activation and (b) nested-FCM with natural activation

TABLE 1. Time series data of the kinematic parameters 

t
(sec)

x
(m)

vx
(m/s)

ax
(m/s2)

y
(m)

vy
(m/s)

ay
(m/s2)

P: 0.500
1.000
1.500
2.000
2.500

0.940
1.879
2.819
3.758
4.698

1.879
1.879
1.879
1.879
1.879

0
0
0
0
0

0.806
2.540
5.201
8.790
13.307

1.856
3.711
5.567
7.422
9.278

3.711
3.711
3.711
3.711
3.711

TABLE 2. Soft kinematical model using nested FCM technique
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which closely match with the hard equations ((1) to (19)). 
The error is negligible with small computation cost of 
618 sec on a Quad-Core 2.3 GHz machine with 32-b OS 
and 2 GB RAM. The developed model is also capable of 
forecasting future time series data. To examine forecasting 
and generalization capability, the nested power series 
of concept time are removed and replaced back with its 
original single node representing concept of time (t). A 
seven-node FCM is obtained including the concept node 
(t) connected to all other six nodes via links which carry 
not crisp or fuzzy weights but meaningful functions 
((20) to (25)). The model is used to guess on the future 
kinematical characteristic of the projectile at time t=3 sec 
with negligible RMS error of 0.0024 compared with the 
precise math model (Table 3). 

	 x(t) = 0.0008 + 1.8781 t + 0.0003  1.879 (t).	 (20)

	 vx(t) = 1.8793  1.879.	  (21)

	 ax(t) = -0.0003 t2   0.	 (22)

	 y(t) = 0.0004 + 0.6841 t + 1.8554 t2 

		   0.684 t + 1.856 t2.	 (23)

	 vy(t) = 0.0006 + 3.7101 t + 0.0003 t2  3.711 t.	 (24)

	 ay(t) = 3.7108 – 0.0002 t2  3.711.	 (25)

	 The results were examined against the original 
math model as well as polynomial curve fitting in 
MATLAB. Functions, such as polyfit and polyval, or more 
conveniently MATLAB’s least square curve fitting tool on 
figure window (under tools menu), can be used to draw 
up to 10th degree polynomial as well as spline fits. Figure 
4(a) shows the position along Y-axis (y) as a function of 

time (t) using same data points in Table 1 in MATLAB. The 
resulted equation from our nested-FCM technique (23) and 
the MATLAB-generated equation (Figure 4) are compared 
against the benchmark equation from the original kinematic 
model (17). In terms of forecasting the position at t=3 sec, 
MATLAB equation resulted in +0.193% error (18.7922 m), 
while nested-FCM resulted in -0.025% error (18.7513 m) 
in ratio with the exact benchmark position (18.7560 m), 
which shows around 0.168% improvement in absolute 
forecasting error. 

MODELING STOCHASTIC DATA POINTS

Dynamic and irregular system behaviors are often due to 
stochastic variables, which they themselves often depend 
on many other variables. Electricity consumption (Thatcher 
2007) at individual households or a power network at 
broader scope is a good example of random variables. 
Metrological variables, temperature, precipitation, wind 
speed, wind direction, humidity, pressure and solar 
radiation, are only one type of variables influencing on 
level of electricity demand, while on the other hand, there 
are tens of socio-cultural, geographical and demographic 
factors, e.g. gender, age and income, which concurrently 
influence on electricity demand. 
	 There is abundance of research on modeling electricity 
demand mainly as a baseline for forecasting future data, 
from half hour lead time till one day ahead, using various 
regression techniques (Bianco et al. 2009), as well as 
neural regression (Abraham & Nath 2001). While in most 
of the literature, focus goes merely on regression between 
electricity demand and influencing multivariate, e.g., 
temperature (Thatcher 2007), there are other attempts on 
modeling demand as a function of time. The stochastic 
nature of demand as a function of time has been modelled 
using time series analysis, such as autoregressive moving 
average (ARMA) (Pappas et al. 2010) autoregressive 

TABLE 3. Forecasting kinematical variables at time t = 3 s

Kinematic parameter: x vx ax y vy ay

Hard model:
Soft model:

5.6370
5.6354

1.8790
1.8793

0
0.0027

18.7560
18.7513

11.1330
11.1318

3.7110
3.7107

FIGURE 4. MATLAB curve fitting tool applied to the kinematic model
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integrated moving average (ARIMA) (Erdogdu 2007), 
classic Kalman filter (Connor 1996) and cyclic time 
horizon such as daily, weekly (Taylor et al. 2006) and 
monthly (Abraham & Nath 2001) forecasting.
	 On an attempt using nested technique of this article, 
we applied a perceptron rule for regression between 
half-hourly demand levels and the time. The dataset is 
obtained from a typical summer day in eastern Australia 
which is publically available on Australian energy market 
operator (AEMO) website (Historical 2013). An interesting 
capability of the developed technique, as showed through 
experiments, is the fact that dataset could be extremely 
heterogeneous which by itself signifies robustness of the 
developed nested-FCM methodology. In this experiment, 
half-hourly observations of demand levels (scaled down 
within (0, 1) times 104 MW) and time dimension (scaled 
down to 0, 0.47) equivalent from (00:00 to 23:30 PM), 
are two heterogeneous variables both in range and type. 
Yet, as shown in Figure 5, the nested technique is able to 
draw a valid regression model, e.g. a quartic polynomial 
in the given experiment. MATLAB curve fitting tool is also 
applied to the same data which qualitatively compares with 
the obtained result from the nested-FCM, however with 
slightly less error. Both models show similar functions for 
relating 48 data points of half-hourly demand levels in one 
day. However, the nested technique has the advantage for 
switching from polynomial mode to other functions with 
minor computational effort and adjustment of training 
parameters. 

APPLICATION IN MULTIVARIATE REGRESSION 

There is limited literature about multivariate regression. 
This section elaborates the application of the introduced 
nested-FCM technique in accurate yet robust data 
interpolation. A random dataset of imaginary points in 
a 5-dimentional space (Points) is generated as given in 
Table 4. It must be noted here that the data is assumed to 
be certain and the interest is in obtaining exact curve rather 

than approximated fit. There are five state variables A, B, C, 
D and E, with the given dataset. The goal is to model each 
variable as a function of the others, e.g., C= F(A,B,D,E). 
It must be also noted that we are interested in finding a 
single polynomial function to attain such relationship 
which is more challenging compared to interpolation 
using piecewise splines. The experiment is repeated twice 
using 4-node and 5-node nests, to obtain cubic and quartic 
polynomials, respectively. 
	 The results from the two experiments on the same 
machine as used for the other experiments are given in 
Table 4. The result from the first experiment with 4-node 
nests (at left) showed a set of cubic functions which rebuild 
the original dataset almost precisely (Points (or mapped 
to) Points_Learnt), i.e. error is closed to zero upon 1 M 
iterations in 24 min. A mask is put on the matrix of weights 
which serves as a perceptron guide to accumulate all 
constant values at a single node (i.e. the first node of each 
nest). For example, without the mask, variable C initially 
would be obtained in the form of (26) as a function of 
other variables as well as its own first degree (in brackets). 
However, when the mask is applied, the term in brackets 
is automatically moved to the left side of the equation 
whereby a magnifying coefficient will be created to be 
multiplied by all terms at the right side of the equation 
(27). The masking technique is particularly useful in 
order to maintain the range of the polynomial parameters 
without need for normalizing net weights which is essential 
in classic activation techniques. Table 4 also shows the 
results from the quartic nests (at right). However, prior to 
explanation about the results, a modification technique is 
described as made to the learning rule in (28) and (29).

	 C =	 0.0366 + 0.0451 A – 0.0071 A2 – 0.0018 A3 
			   + 0.0407 B – 0.0124 B2 + 0.0005 B3 + (0.9727 C
			   + 0.0457 D – 0.0138 D2 + 0.0006 D3 + 0.2407 E
			   + 0.0354 E2 – 0.0061 E3	  	

(26)

FIGURE 5. Nested-FCM and MATLAB curves (set to 4th degree polynomial) for modeling 
electricity demand as a function of time



1788	

TABLE 4. Experimental work for obtaining relationship model of the five variables

 



	 	 1789

	 C =	 F(A, B, D, E) = 1.2933 + 1.5936 A – 0.2509 A2

			    – 0.0636 A3 + 1.4382 B – 0.4382 B2 + 0.0177 B3

			   + 1.6148 D – 0.4876 D2 + 0.0212 D3 + 8.5053 E 
			   + 1.2509 E2 – 0.2155 E3

	 (27)

	 Let us consider a node xi being the forth node from 
a nest A with an exponential power, xi=A3. The classic 
perceptron rule as employed in the first experiment 
suggests that weight of link lij at training iteration (k+1) is 
corrected according to level of error ej at output yj at the 
previous training iteration (k). Since the perceptron rate α 
is constant, it has to be limited to extremely small values 
to avoid chaotic behavior of nodes with higher degrees. 
Adversely, very small learning rate leads to prolonged 
training with considerably high computation cost. 

	 	 (28)

	 	 (29)

	 C	=	– 0.1865 + 1.1610 A – 0.7566 A2 + 0.0015 A3 +
			   0.0120 A4 + 2.2592 B + 0.9948 B2 + 0.1730 B3 –
			   0.0075 B4 + 1.5558 D + 0.6479 D2 + 0.2689 D3

			   + 0.0345 D4 + 0.4270 E + 1.2891 E2 +		
			   0.0292 E3 – 0.0697 E4

	 (30)

	 A modification is made through the application of 
variable learning rate, i.e. a function of the source node’s 
degree and the elapsed time, instead of constant rate (29). 
Accordingly, agile training is made possible with low 
error and computation cost and without the risk of FCM 
chaotic behavior. The quartic functions, as compared 
against the cubic functions, were obtained nearly eight 
times faster using the above technique, which were also 
twice more accurate as indicated in Table 4. Thanks to the 
high precision, the functions can now be used to generate 
new points. Overall, it must also be noted that the length 
of the dataset, e.g. 10 records in this case and the number 
of variables to correlate, both exponentially increase the 
cost of computation if the same precision level is desired. 

CONCLUSION

Neural regression is commonly used to draw relationship 
models of linear systems without involving complexity of 
mathematics. In this article, we discussed the application 
of nested FCM to materialize the notion of natural 
inference, whereby relationship model of nonlinear and 
multivariate systems could be expressed in the form of a 
set of functions, such as polynomial. Each state variable 
could be modeled as a function of one or more other 
variables. The developed strategy was examined in three 
situations, namely a kinematic problem, a stochastic 

example, and a multivariate closed loop system. The 
obtained results were compared against that of math 
equivalents and MATLAB standard curve fitting tool, which 
showed satisfactory accuracy and computational cost. 
This research is in progress at both aspects of theatrical 
methods and validation through practical applications. For 
example, the model appeared to be a viable alternative to 
stepwise and classic regression in modeling stochastic 
electricity demand. This signifies possible application 
in learning and forecasting of electricity demand being 
one of the challenging engineering problems. Another 
ambitious research is on defining universal functions which 
automatically adapt to the nature of problem. At last, the 
application of principle component analysis (PCA) is within 
our future scope to remove useless nodes for reduced 
nested-FCM size.
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