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Dual Solutions of Forced Convection Flow along a Stretching Sheet with Variable 
Thickness in Presence of Free Stream and Magnetic Field

(Dual Penyelesaian Aliran Perolakan Dipaksa di Sepanjang Lembaran Regangan dengan Ketebalan 
Pemboleh Ubah dalam Kehadiran Aliran Bebas dan Medan Magnet)
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ABSTRACT

The paper aims at studying forced convection in a viscous incompressible electrically conducting fluid along stretching 
sheet with variable thickness in the presence of variable free stream and magnetic field. The governing equations of 
flow and heat transfer are subjected to similarity transformation using boundary layer assumption and are then solved 
numerically. The system of equations possesses dual solutions for negative value of velocity power index (m). The impact 
of velocity parameter (λ) and other parameters on velocity and temperature distributions, skin friction and heat transfer 
are studied when system possesses dual solutions and is presented through graphs and discussed suitably. It is found 
that the first solution is in tune with natural physical phenomena. The second solution possesses very large skin-friction 
and fluid velocity as compared to the first solution. The second solution is stable and is a mere outcome of non-linearity 
and does not follow natural phenomena.
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ABSTRAK

Kertas ini bertujuan mengkaji perolakan dipaksa dalam pengaliran bendalir likat tak termampat elektrik di sepanjang 
lembaran regangan dengan ketebalan pemboleh ubah dengan kehadiran pemboleh ubah aliran bebas dan medan 
magnet. Persamaan pemindahan haba dan aliran tertakluk kepada transformasi persamaan menggunakan andaian 
lapisan sempadan dan kemudian diselesaikan secara berangka. Sistem persamaan mempunyai dua penyelesaian untuk 
nilai negatif indeks tenaga halaju (m). Kesan parameter halaju (λ) dan lain-lain parameter ke atas halaju dan taburan 
suhu, geseran kulit dan pemindahan haba dikaji apabila sistem memiliki dual penyelesaian dan ditunjukkan melalui 
graf dan dibincangkan penyesuaiannya. Didapati bahawa penyelesaian yang pertama adalah sealiran dengan fenomena 
fizikal semula jadi. Penyelesaian yang kedua memiliki geseran kulit yang sangat besar dan halaju bendalir berbanding 
dengan penyelesaian yang pertama. Penyelesaian kedua adalah stabil dan hasil daripada kelinearan dan tidak mengikut 
fenomena semula jadi.

Kata kunci: Aliran bebas; medan magnet; penyelesaian persamaan; permukaan regangan; ketebalan pemboleh ubah 

INTRODUCTION

The flow of a viscous incompressible fluid along a 
stretching sheet has many important applications in the 
extrusion process involved in plastic and metal industries. 
Surfaces with variable thickness help in reducing weight 
and are used in different civil, mechanical and marine 
structure related applications (Shufrin 2005). Thus, flow 
along surface of variable thickness adds an interesting 
aspect to viscous boundary layer flows. Sakiadis (1961a, 
1961b) presented a seminal study dealing the flow along 
continuously stretching sheet. Later, many researchers 
addressed and contributed to different aspects of study of 
flow along stretching/shrinking sheets. Here we mention 
only those relevant to the present study, for brevity. 
Mahapatra and Gupta (2002, 2001) studied the stagnation-
point flow of a viscous incompressible electrically 
conducting fluid towards a stretching surface. The paper 

focused on effect of velocity parameter i.e. ratio of the 
velocity of stretching sheet to free stream velocity on heat 
and mass transfer. Pop et al. (2004) extended the study 
presented by Mahapatra and Gupta (2002, 2001) by adding 
the radiation effect to heat transfer. Ishak et al. (2009, 
2006) observed the flow on vertical/horizontal stretching 
sheet of variable surface temperature in the presence of 
free stream without or with transverse magnetic field. The 
velocity parameter i.e. ratio of the velocity of stretching 
sheet to free stream velocity effected the flow and heat 
transfer. Sharma and Singh (2009) presented the study on 
MHD stagnation point flow in the presence of free stream 
and considered the effects of variable thermal conductivity 
and heat source/sink. Bhattacharyya (2013) observed the 
flow over a stretching sheet in the presence of free stream 
considering the non-uniform heat flux and the velocity 
parameter being an important parameter.
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Studies related to viscous flow along thin needle are present 
in literature (Ahmad et al. 2008; Lee 1967; Wang 1990). 
Fang et al. (2012) improvised and argued that non-flatness 
effect of stretching sheet can be investigated and analyzed 
boundary layer flow over a stretching sheet with variable 
thickness. They presented the existence of dual solution 
for negative values of velocity power index. Khader and 
Megahed (2013) extended the problem by observing 
slip phenomena at the surface. Subhashini et al. (2013) 
presented dual solution in thermal diffusive flow over a 
stretching sheet with variable thickness. Anjali and Prakash 
(2014) studied the effect of variable magnetic field on flow 
over a stretching sheet of variable thickness. 
	 Cued by above, the study of boundary layer flow 
along the sheet of variable thickness in the presence of 
free stream in untouched in literature. So, in this paper we 
examine the forced convection in viscous incompressible 
electrically conducting fluid along a stretching sheet 
of variable thickness in the presence of free stream 
and variable magnetic field. The governing non-linear 
partial differential equations of flow and heat transfer are 
subjected to similarity transformation and results into a 
system of non-linear ordinary differential equations. The 
stretching sheet and free stream leads to formulation of 
velocity parameter. The system possesses dual solutions for 
negative value of velocity power index (m) and in this case 
the effects of different parameters on both the solutions are 
observed and presented through figures and table. 

FORMULATION OF THE PROBLEM

Consider a two dimensional forced convection flow 
along a horizontal stretching sheet of variable thickness 
(at temperature Tw(x)) in viscous, incompressible and 
electrically conducting fluid with ambient temperature T∞ 
in the presence of free stream. The Cartesian coordinate x 
is taken along the surface motion and y is perpendicular 
to it, in the direction from the sheet to the fluid. The 
sheet is of variable thickness i.e. sheet is not flat and is 
described by y = A (x + b) (1-m)/2 where A is constant and 
m is the velocity power index. The sheet is impermeable 
with vw = 0. The stretching velocity of the sheet is Uw(x) 
= U0 (x + b) m and the free stream velocity is of the form 
of U∞(x) = Uf (x + b) m, where U0 and Uf are constants. 
The Physical model of the problem is shown in Figure 1.
	 The governing equations for forced convection flow 
under these assumptions following Fang et al. (2012) and 
Subhashini et al. (2013), 

	 ,	 (1)

	 ,	 (2)

	 ,	 (3)

where u and v are velocity components along x and 
y directions, respectively, υ (= m /r) is the kinematic 
viscosity; μ is the coefficient of fluid viscosity; ρ is the 
density of fluid; B(x) is the variable magnetic field; σ is the 
electrical conductivity; p is the pressure; Cp is the specific 
heat at constant pressure; κ is the thermal conductivity; and 
T is the fluid temperature within boundary layer. 

FIGURE 1. Physical Model

Due to free stream i.e. U∞(x) = Uf (x + b) m therefore 

 								      
	 .	 (4)

Eliminating  between (2) and (4), we obtain

	 .	 (5)

The boundary conditions are:

	

					   

	 .	 (6)

METHOD OF SOLUTION

Introducing the stream function ψ (x, y) such that  

and  therefore (1) is identically satisfied. The 

similarity transformation for (1), (3) and (5) and boundary 

condition (6) are given as , 

,   where ξ 
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is similarity variable; f (ξ) is dimensionless stream function; 
and θ (ξ) is dimensionless fluid temperature. The sheet 

temperature is given as   and variable 

magnetic field is of the form . Using the 
similarity variables, the expression of velocities and u and 
v then take the form  and 

							     
	

	 ,	
	

(7)

and the governing equations (3) and (5) are reduced to

	 .	 (8)
							     
	
	 ,	 (9)

where   is the velocity parameter which is the 

ratio of velocity of stretching sheet to free stream velocity,   

 magnetic parameter and  is the 

Prandtl number.

The boundary conditions (6) are transformed into:

	 ξ = 0:	 f ´(0) = 1;   f(0) = β ;  θ(0) = 1

	 ξ → ∞:	 f ´(∞) = λ;  θ(∞) = 0,	 (10)

where   is the sheet thickness parameter. 

SKIN-FRICTION COEFFICIENT

The skin-friction coefficient (Cf) at the sheet surface is 
given by: 

	  = 	 (11)

where   is the Reynolds Number.

NUSSELT NUMBER

The rate of heat transfer in terms of Nusselt number (Nu) 
at the sheet surface is given by,

	 	 (12)	
	  	

RESULTS AND DISCUSSION

The system of non-linear (8) and (9) along with boundary 
conditions (10) are solved numerically using fourth order 
Runge-Kutta method along with shooting technique. In 
order to validate the scheme, the values of f "(0) achieved 
by the present scheme are cross checked with the results 
published by Fang et al. 2012 and Subhashini et al. 2013 
when λ = 0, M = 0 and β = 0.5. The comparison is presented 
in Table 1, which shows excellent match. The computations 
are carried for 0.2 ≤ m ≤ 0.95 since in this domain the 
system possesses dual solution. The solutions are named as 
first solution and second solution. From (11) and (12) it is 
evident that f "(0) and -θ´(0) are measures of skin-friction 
(wall shear stress) and the rate of heat transfer, respectively. 
f ´(ξ) and θ(ξ) measure the fluid velocity and temperature 
distribution within the boundary layer. 
	 It is seen in Figure 2(a) that for the first solution 
with increase in velocity parameter (λ) the skin-friction 
increases while for the second solution, as seen in Figure 
2(b), skin-friction decreases. Now as λ increases, it 

TABLE 1. Comparison of f "(0) with previously published results when β = 0.5, λ = 0, M = 0

m
Fang et al. (2012)  Subhashini et al. (2013) Present result

First Solution Second Solution First Solution Second Solution First Solution Second Solution
-0.55
-0.6
-0.65
-0.7
-0.75
-0.8
-0.85
-0.9
-0.95

-1.2807
-1.4522
-1.7095
-2.0967
-2.6882
-3.6278
-5.2477
-8.5457
-18.5194

257.6167
59.6524
31.6977
24.1604
23.3081
27.4853
40.1885
79.3287
292.5357

-1.2812
-1.4531
-1.7103
-2.0974
-2.6891
-3.6282
-5.2481
-8.5463
-18.5209

256.910
59.453
31.704
23.997
23.005
27.201
39.225
79.426
291.003

-1.28073
-1.45219
-1.70946
-2.09665
-2.68817
-3.62775
-5.24766
-8.5457
-18.5194

257.6146
59.65236
31.69766
24.16041
23.30808
27.48532
40.1885
79.32835
292.52
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physically means that the free stream velocity increases 
which in turn implies that fluid velocity in boundary layer 
must increase which would lead to increase in skin friction. 
Thus the first solution agrees with the physical phenomena. 
For the second solution as m decreases the values of f "(0) 
are large then dip and then again attain large value. The 
domain of existence of value of f "(0) for first and second 
solution is different. In first solution the values of f "(0) 
are majorly negative while for second solution they are 

positive. Looking at Figure 3(a) and 3(b) the rate of heat 
transfer increases with the decrease in m. For the second 
solution with the increase in λ the rate of heat transfers 
increase while no clear trend is seen in the case of first 
solution. Figure 4(a) shows that for the first solution with 
the increase λ fluid velocity increases along with increase 
in boundary layer thickness. Figure 4(b) depicts that with 
increase in λ fluid velocity decreases. Comparing Figure 
4(a) and 4(b) for given value of λ, the fluid velocity is 

FIGURE 2. Variation of f "(0) for different values of λ versus m with β – 0.5, M = 0.25, Pr = 0.7

FIGURE 3. Variation of θ´(0) for different values of λ versus m with β – 0.5, M = 0.25, Pr = 0.7

FIGURE 4. Velocity profiles (a) and (b) for different values of λ versus ξ with m = -0.65, β = 0.5, M = 0.25, Pr = 0.7
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higher in the case of second solution. Seen in Figure 5(a) 
and 5(b) the variation in fluid temperature due change in 
λ is practically negligible. Thus the velocity parameter 
λ majorly affects the fluid velocity. Figure 6(a) and 6(b) 
shows that with the increase sheet thickness parameter β, 
the value of f "(0) decreases for the first solution while it 
increases for the second solution. The increase in sheet 

thickness parameter means injection of fluid within the 
boundary layer which thickness the boundary layer and 
so reduces the skin-friction. The first solution agrees with 
this argument. It is seen that in the case of second solution 
the values of f "(0) are very large. Further, in case of first 
solution the value of f "(0) is negative while for second 
solution the value is positive. Figure 7(a) and 7(b) shows 

FIGURE 7. Variation of θ´(0) for different values of β versus m with M = 0.25, λ = 0.1, Pr = 0.7

FIGURE 6. Variation of f "(0) for different values of β versus m with M = 0.25, λ = 0.1, Pr = 0.7

FIGURE 5. Temperature profiles (a) and (b) for different values of λ versus ξ with m = -0.65, β = 0.5, M = 0.25, Pr = 0.7
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that with increase in β the rate of heat transfer increases also 
with decrease in m the rate of heat transfer increases. It is 
observed in Figure 8(a) that with the increase in β the fluid 
velocity decreases for first solution while in Figure 8(b) it 
is seen that with the increase in β fluid velocity increases 
for the second solution. However, for the first solution the 
boundary layer is thick in comparison to second solution, 
for the reason explained above. A steep rise in fluid velocity 
is seen for second solution because of positive and large 
value of f "(0). Figure 9(a) and 9(b) shows that with the 
increase in the value of β fluid temperature decreases for 
both first and second solution. Figure 10(a) depicts that 
with the increase in Magnetic parameter M, f "(0) decrease 
for the first solution while it is seen from Figure 10(b) that 
with the increase in M, f "(0) increases. Also, the value of 
f "(0) is negative for first solution and positive for second 
solution. As is observed from Figure 11(a) and 11(b) that 
with the increase in M the rate of heat transfer decrease for 
both first and second solution. From Figure 12(a) it is seen 
that with the increase in M fluid velocity decreases for the 
first solution. This is true, since the presence of magnetic 

field results in application of Lorentz force which in turn 
retards fluid velocity. However, from Figure 12(b) it is 
observed that with increase in M fluid velocity increases. 
Hence first solution agrees with the natural phenomena. 
Figure 13(a) and 13(b) depicts that with the change in M 
the fluid temperature distribution is negligibly effected. 
Figure 14(a) and 14(b) shows that with the decrease in 
velocity power index m the fluid velocity decreases and a 
sharp rise in fluid velocity seen in case of second solution. 
It is also noted that boundary layer thickness is larger in 
case of first solution. Furthermore, from Figure 15(a) it 
is seen that with the decrease in m, the fluid temperature 
decreases but no clear trend is seen for the second solution 
as depicted in Figure 15(b). Figure 16(a) and 16(b) depicts 
with the increase in Prandtl number Pr, the rate of heat 
transfer decrease and interesting to observe that for second 
solution at Pr = 0.2 the rate of heat transfer is almost zero. 
It is observed from Figures 17(a) and 17(b) that with the 
increase in Pr the fluid temperature decreases for both first 
and second solution. It is also seen that thermal boundary 
layer is thicker in case of first solution.

FIGURE 8. Velocity profiles (a) and (b) for different values of β versus ξ with m = -0.65, λ = 0.1, M = 0.25, Pr = 0.7

FIGURE 9. Temperature profiles (a) and (b) for different values of β versus ξ with m = -0.65, λ = 0.5, M = 0.25, Pr = 0.7



	 	 355

FIGURE 10. Variation of f"(0) for different values of M versus m with β = 0.5, λ = 0.1, Pr = 0.7

FIGURE 11. Variation of θ´(0) for different values of M versus m with β = 0.5, λ = 0.1, Pr = 0.7

FIGURE 12. Velocity profiles (a) and (b) for different values of M versus ξ with m = -0.65, λ = 0.1, β = 0.5, Pr = 0.7
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FIGURE 13. Temperature profiles (a) and (b) for different values of M versus ξ with m = -0.65, λ = 0.1, β = 0.5, Pr = 0.7

FIGURE 15. Temperature profiles (a) and (b) for different values of m versus ξ with M = 0.25, λ = 0.1, β = 0.1, Pr = 0.7

FIGURE 14. Velocity profiles (a) and (b) for different values of m versus ξ with M = 0.25, λ = 0.1, β = 0.5, Pr = 0.7
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CONCLUSION

Forced convection along a sheet of variable thickness in 
the presence of free stream and magnetic field has been 
studied numerically. The system of equations governing 
the flow possess dual solution when the 0.2 ≤ m ≤ 0.95. 
It is found that the first solution agrees with the physical 
phenomena while second solution deviates from physically 
reality. For the second solution the fluid velocity is very 
high. The second solution behaves in opposite manner to 
the first solution. The second solution is existent due to 
non-linearity and is found to be numerically stable. 
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