
Sains Malaysiana 53(6)(2024): 1441-1461
http://doi.org/10.17576/jsm-2024-5306-17

A Robust Design for the Omnibus SPRT Control Chart Under Skewed Data 
Distributions

(Reka Bentuk Teguh untuk Carta Kawalan Omnibus SPRT di Bawah Taburan Data Pencong)

JING WEI TEOH1, WEI LIN TEOH1,2,*, ZHI LIN CHONG3, MING HA LEE4 & KHAI WAH KHAW5

1School of Mathematical and Computer Sciences, Heriot-Watt University Malaysia, 62200 Putrajaya, Malaysia
2International Chair in DS & XAI, International Research Institute for Artificial Intelligence and Data Science, Dong 

A University, Danang, Vietnam
3Department of Electronic Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul 

Rahman, 31900 Kampar, Perak, Malaysia
4Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, 93350 

Kuching, Sarawak, Malaysia
5School of Management, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia

Received: 18 December 2023/Accepted: 23 May 2024

ABSTRACT

Control charts are widely used in manufacturing industries to ensure that production levels are stable and satisfactory. 
Recently, the omnibus sequential probability ratio test (OSPRT) control chart was developed for the purpose of 
monitoring the mean and variability of a process simultaneously. As the OSPRT chart was proposed for the first time 
in literature, its development relied entirely on the assumption that data follow the Normal distribution. Nonetheless, 
researchers are frequently reminded that the quality characteristics of manufacturing processes do not necessarily 
follow the Normal distribution, e.g., strengths of glass fibres, and lifetimes of products. In this paper, we investigate 
the extent to which the performances of the OSPRT chart designed for the Normal model deteriorate, in situations 
where the data distributions are Gamma and Lognormal. Results show that the in-control average run length (ARL) 
and standard deviation of the run length of the OSPRT chart designed for the Normal distribution deteriorate rapidly 
as skewness increases. To address this issue, we propose a robust design for the OSPRT chart by adjusting its control 
limits, known as the skewness correction method. It is shown that the skewness-corrected OSPRT chart enjoys a 
guaranteed in-control ARL, with a justifiable degradation in its out-of-control performances. Besides, we also show 
some insights into selecting the charting parameters for the skewness-corrected OSPRT chart in order to achieve an 
optimum out-of-control ARL performance over various shift sizes. The paper wraps up with an illustrative example 
of the skewness-corrected OSPRT chart for monitoring the weights of radial tyres.
Keywords: Average run length; joint monitoring control chart; sequential probability ratio test; skewed distributions; 
statistical process control

ABSTRAK

Carta kawalan telah digunakan secara meluas dalam sektor pembuatan untuk memastikan bahawa tahap pengeluaran 
adalah stabil dan memuaskan. Baru-baru ini, carta kawalan berdasarkan ujian nisbah kebarangkalian berjujukan 
(OSPRT) telah direka untuk tujuan memantau min dan variabiliti sesuatu proses industri secara serentak. Oleh sebab 
carta OSPRT baharu diusulkan, rekaannya bergantung sepenuhnya pada andaian bahawa data mengikuti taburan Normal. 
Walau bagaimanapun, para penyelidik sering diingatkan bahawa ciri mutu dalam proses pembuatan tidak semestinya 
mengikuti taburan Normal, seperti kekuatan serat kaca dan hayat produk. Dalam makalah ini, kami mengkaji sejauh 
mana prestasi carta OSPRT yang direka untuk taburan Normal merosot, dalam situasi yang mana taburan data adalah 
Gamma dan Lognormal. Hasil kajian menunjukkan bahawa purata panjang larian (ARL) dan sisihan piawai panjang 
larian carta OSPRT bagi kes terkawal merosot dengan laju apabila darjah pencongan meningkat. Untuk menyelesaikan 
masalah ini, kami membina reka bentuk yang teguh untuk carta OSPRT dengan mengubahsuaikan had kawalan, dikenali 
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sebagai kaedah pembetulan pencongan. Carta OSPRT berdasarkan pembetulan pencongan didapati menghasilkan ARL 
terkawal yang terjamin, dan prestasinya dalam kes tidak terkawal juga kurang dijejaskan. Selain itu, kami memberikan 
beberapa garis panduan untuk memilih parameter carta OSPRT yang sesuai bagi mencapai prestasi ARL tidak terkawal 
yang optimum untuk pelbagai magnitud anjakan. Makalah ini diakhiri dengan contoh aplikasi carta OSPRT berdasarkan 
pembetulan pencongan untuk memantau berat tayar radial.
Kata kunci: Carta kawalan pemantauan serentak; kawalan proses statistik; purata panjang larian; taburan pencong; 
ujian nisbah kebarangkalian berjujukan 

INTRODUCTION

Statistical process control (SPC), which constitutes a 
decent part of applied statistics, is widely recognised as 
the most effective technique for monitoring a process 
quality characteristic of interest. Among a myriad of tools 
available, the control chart distinguishes itself as the most 
popular SPC tool, thanks to its simplicity and visually 
intuitive representation. In order to address the rising 
demand for control charts with greater sensitivity, various 
researchers have contributed to ongoing enhancements 
of the state-of-the-art techniques (Abu-Shawiesh 
&Abdullah 2001; Khoo 2004; Li et al. 2010; Teh et al. 
2015). Typical developments include the modification 
of existing control schemes or designs to achieve certain 
aims (Abu-Shawiesh & Abdullah 2001; Teh et al. 2015), 
and the development of new control schemes based on 
insights from past research and/or unexplored knowledge 
areas (Khoo 2004; Li, Tang & Ng 2010). As control charts 
are fundamental tools in industrial statistics, they often 
prove useful in a diverse range of applications spanning 
various industries, such as biotechnology, manufacturing, 
signal processing, and finance, to name a few.

The main goal of SPC was to improve the quality 
of processes by identifying and reducing variation and 
errors, ultimately leading to higher consistency in the final 
output. Having that said, it is essential for practitioners to 
control both the location and variability of a process in 
any quality control application. There is a considerable 
number of joint monitoring control charts devised for 
this purpose, each possessing a different feature catered 
to specific scenarios in the real industrial environment. 
For instance, Haq, Brown and Moltchanova (2015) and 
Sabahno, Amiri and Castagliola (2021) devised joint 
monitoring control charts for the mean and variance based 
on the assumption that the process follows a Normal 
(or Gaussian) distribution. Considering that certain 
manufacturing processes may exhibit non-Normal or 
skewed distributions, researchers such as Chowdhury, 
Mukherjee and Chakraborti (2015), Diaz Pulido, Cordero 

Franco and Tercero Gómez (2023) and Hou and Yu 
(2021), have developed nonparametric control charts 
that are sensitive to changes in both the location and 
scale parameters of a distribution. Recently, Teoh et 
al. (2023) proposed a new sequential probability ratio 
test (SPRT) chart, known as the omnibus SPRT (OSPRT) 
chart, for simultaneous monitoring of the mean and 
variance of a Normal distribution. They showed that the 
OSPRT chart not only outperforms the Shewhart X-S, 
weighted-loss cumulative sum (CUSUM), and absolute-
value SPRT charts in terms of the detection speed, but 
also enjoys global optimal properties with respect to the 
out-of-control average time to signal. In addition to the 
outstanding detection performance, the OSPRT chart is 
also shown to yield a relatively small in-control average 
sample number in the long run, making it extremely 
appealing to production applications where sampling is 
expensive.

As stated in the preceding paragraph, the OSPRT 
chart operates on the assumption that the underlying 
data follow the Normal distribution. However, in certain 
applications, the shape of the data can differ substantially 
from that of the Normal distribution. Some examples 
of data include the strength of glass fibres, economic 
indices, lifetimes of products, and air pollution levels. 
The distributions of these data are typically skewed to 
the right (Dakhn, Bakar & Ibrahim 2023; Farouk, Aziz & 
Zain 2020; Hossain et al. 2022; Nawaz, Azam & Aslam 
2021; Qiu 2018). Generally, control charts designed for 
the Normal distribution are expected to perform less 
satisfactorily under non-Normal conditions. This is made 
worse when the underlying data have a highly skewed 
distribution. Many researchers have reported deterioration 
in the performance of control charts designed under the 
Normal model when the data in use follow a skewed 
distribution (Ho, Kao & Chou 2021; Huberts et al. 2018; 
Noorossana, Fathizadan & Nayebpour 2016). There 
are three common ways to tackle this issue. First, if 
practitioners know the exact distribution of the data, then 
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it would be possible to derive a parametric control chart 
for the specific distribution. One example is the SPRT 
chart for the Maxwell distribution proposed by Godase, 
Mahadik and Rakitzis (2022). One of the challenges of 
such a method is that the statistic of the control chart can 
be extremely convoluted and may not have a very neat 
form. It may also be difficult to derive the run length 
properties of the control chart due to the perplexity in 
its control statistic. The second approach is to derive 
a nonparametric control chart which is well-suited 
for a range of distributions. One example is the SPRT 
sign chart proposed by Mahadik and Godase (2023). 
While the approach is quite popular among scholars, we 
quickly realise that nonparametric control charts tend to 
have a lower statistical power compared to parametric 
control charts, especially in settings where parametric 
assumptions are approximately valid. The third 
approach, which is adopted in this paper, is to introduce 
skewness correction to control charts designed under 
the Normal model (Huberts et al. 2018; Mehmood et al. 
2020; Riaz et al. 2016). This is done by modifying the 
control limits of the control chart to achieve the desired 
in-control average run length (ARL), while preserving 
the original features of the control chart. The biggest 
advantage of this approach is that we avoid revamping 
the entire control chart, which can often be quite 
tedious and cumbersome. By preserving the structure 
of the original control chart, practitioners will find the 
design and operation of the skewness-corrected control 
chart simpler and less demanding. In this research, we 
investigate the performances of the OSPRT chart under 
two different skewed distributions, and develop a new 
robust design for the OSPRT chart based on skewness 
correction. The proposed design guarantees that the in-
control performance of the OSPRT chart is kept at the 
desired level, with the price of a degraded out-of-control 
performance that depends upon the degree of skewness. 
This paper also aims to provide some insights into 
selecting appropriate charting parameters for the OSPRT 
chart in order to maximise its effectiveness towards a 
range of process shifts. It is, however, important to note 
that any attempt to compare the OSPRT chart with other 
control charts is far beyond the scope of this paper, and 
hence is not discussed throughout the paper. 

The paper is organised as follows. We first 
provide an overview of the OSPRT chart designed 
under the Normal model. This includes a step-by-step 
implementation of the OSPRT chart, as well as its run 
length profiles when the underlying data are Normally 

distributed. Next, we present the statistical properties 
of two popular choices of skewed distributions, i.e., the 
Gamma and Lognormal distributions. We then evaluate 
the ARL and standard deviation of the run length (SDRL) 
performances of the conventional OSPRT chart under 
the Gamma and Lognormal distributions for various 
degrees of skewness. The results obtained are contrasted 
against the performances obtained under the Normal 
distribution. Next, we outline the full procedure for 
computing the skewness-corrected control limits for the 
OSPRT chart, and present some analyses on the possible 
regions where the optimal charting parameters lie. An 
illustrative example on the implementation of the OSPRT 
chart with skewness correction is also presented. Finally, 
some conclusions and suggestions for future work are 
provided.

THE OSPRT CHART FOR THE NORMAL DISTRIBUTION

Let X denote the quality characteristic of a Normal 
process with mean μ0 and variance 𝜎𝜎02.  During process 
monitoring, the realisations of the process (Xi1, Xi2, …, 
𝑋𝑋𝑖𝑖𝑁𝑁𝑖𝑖  are sampled sequentially at the sampling points i 
= 1, 2, …, where Ni indicates the sample number of the 
ith sample index. It is assumed that the observations are 
sampled independently from the process. Suppose that 
our goal is to detect a change in the distribution from 
N(μ0,𝜎𝜎0

2. ) to N(μ0 + δσ0, η
2 𝜎𝜎02. ), where δ and η represent 

the magnitudes of the mean and standard deviation 
shifts, respectively. The OSPRT chart for monitoring 
the sequence of observations has the following control 
statistic

  
(1)

for i = 1, 2, … and j = 1, 2, …, Ni, where sgn(⋅) is the 
sign function, and (k, γ) are the reference parameters of 
the OSPRT chart. Teoh et al. (2023) proved that the out-
of-control ARL (ARL1) for a pair of deterministic shift 
sizes (δ, η) can be minimised by choosing

  (2)

and

    (3)

𝐶𝐶𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝑖𝑖,𝑗𝑗−1 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝜂𝜂 − 1) (𝑋𝑋𝑖𝑖,𝑗𝑗 −𝜇𝜇0
𝜎𝜎0

+ 𝑘𝑘)
2

− 𝛾𝛾,          𝐶𝐶𝑖𝑖,0 = 0, 
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𝛾𝛾 = 𝛿𝛿2𝜂𝜂2

(𝜂𝜂2−1)2 + 2𝜂𝜂2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝜂𝜂 
𝜂𝜂2−1 . 

 

𝐶𝐶𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝑖𝑖,𝑗𝑗−1 + (𝑋𝑋𝑖𝑖,𝑗𝑗 −𝜇𝜇0
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+ 𝑘𝑘)
2
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(𝜂𝜂2−1)2 + 2𝜂𝜂2 𝑙𝑙𝑙𝑙 𝜂𝜂 
𝜂𝜂2−1 .𝛾𝛾 = 𝛿𝛿2𝜂𝜂2

(𝜂𝜂2−1)2 + 2𝜂𝜂2 𝑙𝑙𝑙𝑙 𝜂𝜂 
𝜂𝜂2−1 .



1444 

It is worth noting that γ > 0 for all values of δ and η, 
whereas the sign of k depends on the directions of the 
mean shift and/or standard deviation shift. Throughout 
this paper, we will consider only the case δ > 0 and η 
> 1, as the operation of the lower-sided OSPRT chart 
is identical to its upper-sided counterpart. The control 
statistic of the upper-sided OSPRT chart is reduced to 
the following:

    (4)

since sgn(⋅) = 1 when η > 1. 
The OSPRT chart operates on two control limits, i.e., 

a lower control limit g (also known as the acceptance 
limit) and an upper control limit h (also known as 
the rejection limit). Immediately after an observation 
is sampled, a decision on the status of the process 
is reviewed according to the position of the control 
statistic on the charting region. In particular, after the jth 
measurement is taken in the ith OSPRT,  a) if Ci,j drops in 
the region below g, the process is said to be in-control, 
b) if Ci,j falls in the region above h, the process is said to 
be out-of-control, and c) if Ci,j falls in the region between 
g and h, the status of the process is indeterminate, and 
another measurement is sought.
 Generally, when the process is declared as in-control, 
sampling will be terminated and the practitioner will 
resume sampling after a designated period of time. When 
the process is flagged as out-of-control, the affected 
production line is immediately suspended, and the 
relevant engineer attends to investigate the root cause(s) 
of the issue and eliminate them as soon as possible. 
 To assess the run-length performances of the OSPRT 
chart, we provide the formulae for the average sample 
number (ASN), ARL, and SDRL metrics as functions 
of (δ, η). Since each SPRT samples a random number 
of observations, the ASN serves an important role in 
measuring the expected number of samples required until 
a decision about the process can be reached. To derive the 
aforementioned properties, we adopt the Markov chain 
method with two absorbing states. The proof begins by 
partitioning the interval [g, h] into a large number of 
subintervals, say M. The sequence of subintervals [g, g + 
Δ], [g + Δ, g + 2Δ], ……, [g + (M – 1)Δ, h] are taken as 
the transient states S1, S2, ……, SM of the Markov chain, 
respectively, where ∆ = (h - g)/M is the length of each 
subinterval. Besides, we denote (–∞, g) and (h, ∞) as the 
acceptance state Sg and the rejection state Sh, respectively. 
The transition probability matrix P can be constructed as 
follows:

 P =  
(5)

where pu,v is the probability of transiting from state Su to 
state Sv in a single step, for u, v = 1, 2, …, M, with the 
expression

  

(6)

Here, 

𝑃𝑃 = (𝑝𝑝1,1 𝑝𝑝1,2  ⋯ 𝑝𝑝1,𝑀𝑀 𝑝𝑝2,1 𝑝𝑝2,2  ⋯ 𝑝𝑝2,𝑀𝑀  ⋮ ⋮ ⋱ ⋮  𝑝𝑝𝑀𝑀,1 𝑝𝑝𝑀𝑀,2  ⋯ 𝑝𝑝𝑀𝑀,𝑀𝑀 ), 

 

𝑝𝑝𝑢𝑢,𝑣𝑣 = 𝜒𝜒1
2 [∆(𝑣𝑣−𝑢𝑢+0.5)+𝛾𝛾

𝜂𝜂2 | (𝛿𝛿+𝑘𝑘
𝜂𝜂 )

2
] − 𝜒𝜒1

2 [∆(𝑣𝑣−𝑢𝑢−0.5)+𝛾𝛾
𝜂𝜂2 | (𝛿𝛿+𝑘𝑘

𝜂𝜂 )
2

]. 

 

𝜒𝜒1
2{ ⋅ | [(𝛿𝛿 + 𝑘𝑘)/𝜂𝜂]2}   is the cumulative distribution 

function (CDF) of the non-central chi-squared distribution 
with one degree of freedom and non-centrality parameter 
[(δ + k) / η]2. 
 In the following step, we construct a row vector 
B = (b1, b2, …, bM), where bu is the probability that the 
control statistic jumps from the initial state to state Su. 
The expression for bu is given by

  (7)

for u = 1, …, M. The ASN is then calculated using the 
following matrix-vector equation

 (8)

where 1 is a M × 1 vector with entries equal to one, and 
I is the M × M identity matrix. 
 The ARL and SDRL are comprehensive metrics used 
to evaluate the expected value and the variability of the 
run length distribution, respectively. To calculate the 
aforementioned metrics, it is required to first compute 
the probability that a single OSPRT accepts the process 
as in-control, conditional on the shift sizes (δ, η). This 
probability OC(δ, η) can be expressed via the following 
matrix-vector equation  

(9)

Here, the quantity q0 represents the probability that 
the control statistic jumps from the initial state to the 
acceptance state Sg in a single step, whereas B(I - P)-1R 
represents the probability that the control statistic transits 
from the initial state to the acceptance state in more than 
one step. The expression for q0 is given by
  

𝐶𝐶𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝑖𝑖,𝑗𝑗−1 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝜂𝜂 − 1) (𝑋𝑋𝑖𝑖,𝑗𝑗 −𝜇𝜇0
𝜎𝜎0

+ 𝑘𝑘)
2

− 𝛾𝛾,          𝐶𝐶𝑖𝑖,0 = 0, 

 

𝑘𝑘 = 𝛿𝛿
𝜂𝜂2 − 1                         

 

𝛾𝛾 = 𝛿𝛿2𝜂𝜂2

(𝜂𝜂2−1)2 + 2𝜂𝜂2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝜂𝜂 
𝜂𝜂2−1 . 

 

𝐶𝐶𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝑖𝑖,𝑗𝑗−1 + (𝑋𝑋𝑖𝑖,𝑗𝑗 −𝜇𝜇0
𝜎𝜎0

+ 𝑘𝑘)
2

− 𝛾𝛾,          𝐶𝐶𝑖𝑖,0 = 0, 

𝑃𝑃 = (𝑝𝑝1,1 𝑝𝑝1,2  ⋯ 𝑝𝑝1,𝑀𝑀 𝑝𝑝2,1 𝑝𝑝2,2  ⋯ 𝑝𝑝2,𝑀𝑀  ⋮ ⋮ ⋱ ⋮  𝑝𝑝𝑀𝑀,1 𝑝𝑝𝑀𝑀,2  ⋯ 𝑝𝑝𝑀𝑀,𝑀𝑀 ), 

 

𝑝𝑝𝑢𝑢,𝑣𝑣 = 𝜒𝜒1
2 [∆(𝑣𝑣−𝑢𝑢+0.5)+𝛾𝛾

𝜂𝜂2 | (𝛿𝛿+𝑘𝑘
𝜂𝜂 )

2
] − 𝜒𝜒1

2 [∆(𝑣𝑣−𝑢𝑢−0.5)+𝛾𝛾
𝜂𝜂2 | (𝛿𝛿+𝑘𝑘

𝜂𝜂 )
2

]. 

 

𝜒𝜒1
2{ ⋅ | [(𝛿𝛿 + 𝑘𝑘)/𝜂𝜂]2} 

𝑃𝑃 = (𝑝𝑝1,1 𝑝𝑝1,2  ⋯ 𝑝𝑝1,𝑀𝑀 𝑝𝑝2,1 𝑝𝑝2,2  ⋯ 𝑝𝑝2,𝑀𝑀  ⋮ ⋮ ⋱ ⋮  𝑝𝑝𝑀𝑀,1 𝑝𝑝𝑀𝑀,2  ⋯ 𝑝𝑝𝑀𝑀,𝑀𝑀 ), 

 

𝑝𝑝𝑢𝑢,𝑣𝑣 = 𝜒𝜒1
2 [∆(𝑣𝑣−𝑢𝑢+0.5)+𝛾𝛾

𝜂𝜂2 | (𝛿𝛿+𝑘𝑘
𝜂𝜂 )

2
] − 𝜒𝜒1

2 [∆(𝑣𝑣−𝑢𝑢−0.5)+𝛾𝛾
𝜂𝜂2 | (𝛿𝛿+𝑘𝑘

𝜂𝜂 )
2

]. 

 

𝜒𝜒1
2{ ⋅ | [(𝛿𝛿 + 𝑘𝑘)/𝜂𝜂]2} 

𝑏𝑏𝑢𝑢 = 𝜒𝜒12 [
𝑔𝑔+∆⋅𝑢𝑢+𝛾𝛾

𝜂𝜂2 | (𝛿𝛿+𝑘𝑘𝜂𝜂 )
2
] − 𝜒𝜒12 [

𝑔𝑔+∆⋅(𝑢𝑢−1)+𝛾𝛾
𝜂𝜂2 | (𝛿𝛿+𝑘𝑘𝜂𝜂 )

2
], 

 

 𝐴𝐴𝐴𝐴𝐴𝐴 = 1 + 𝐵𝐵(𝐼𝐼 − 𝑃𝑃)−11, 

 

𝑂𝑂𝑂𝑂(𝛿𝛿, 𝜂𝜂) = 𝑞𝑞0 + 𝐵𝐵(𝐼𝐼 − 𝑃𝑃)−1𝑅𝑅. 

Other Comments:

1) Equation (5) on page 1346 should be typeset as follows:

, (5)𝑃𝑃 𝑃 𝑃𝑃
1,1

𝑃𝑃
1,2

 ···  𝑃𝑃
1,𝑀𝑀

 𝑃𝑃
2,1

 𝑃𝑃
2,2

 ···  𝑃𝑃
2,𝑀𝑀

 ⋮  ⋮  ⋱ ⋮  𝑃𝑃
𝑀𝑀,1

 𝑃𝑃
𝑀𝑀,2

 ···  𝑃𝑃
𝑀𝑀,𝑀𝑀( )

2) For all tables (Table 1 to Table 5), try to make all values fit in a single line. You may reduce the
font size of all the texts in the tables.

3) Kindly refer to the original manuscript whenever in doubt. Thank you.

𝐴𝐴𝐴𝐴𝐴𝐴 = 1 + 𝐁𝐁(𝐈𝐈 − 𝐏𝐏)−1𝟏𝟏,

𝑂𝑂𝑂𝑂(𝛿𝛿, 𝜂𝜂) = 𝑞𝑞0 + 𝐁𝐁(𝐈𝐈 − 𝐏𝐏)−1𝐑𝐑.

𝐴𝐴𝐴𝐴𝐴𝐴 = 1 + 𝐁𝐁(𝐈𝐈 − 𝐏𝐏)−1𝟏𝟏,

𝑂𝑂𝑂𝑂(𝛿𝛿, 𝜂𝜂) = 𝑞𝑞0 + 𝐁𝐁(𝐈𝐈 − 𝐏𝐏)−1𝐑𝐑.
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(10)

R is a column vector (r1, r1, …, rM )⊤, where ru is the 
probability that the control statistic jumps from state Su 
to the acceptance state Sg in a single step. The expression 
for ru is given by
  

(11)

 As the run length (RL) is defined as the number of 
samples required until a signal is produced, it is well-
known that RL follows the geometric distribution with 
probability 1 – OC(δ,η) (Montgomery 2019; Stoumbos 
& Reynolds Jr. 1997). By using the properties of a 
geometric distribution, the ARL and SDRL of the OSPRT 
chart can be derived as

  (12)

and

  (13)

respectively.

THE GAMMA AND LOGNORMAL DISTRIBUTIONS

This section discusses some of the statistical properties 
of the Gamma and Lognormal distributions, i.e., the in-
control mean  (𝜇𝜇0∗),   (𝜎𝜎0∗), , in-control standard deviation  (𝜇𝜇0∗),   (𝜎𝜎0∗), , 
and Pearson’s moment coefficient of skewness (θ). Both 
distributions are chosen in our study as they accurately 
describe the behaviour of many skewed variables, such 
as product lifetimes, times to failure of devices, and 
air pollution indices (Abd Razak, Zubairi & Yunus 
2014; Dakhn, Bakar & Ibrahim 2023; Farouk, Aziz & 
Zain 2020). Besides, the degree of skewness of these 
distributions can be easily adjusted by tuning either the 
shape or scale parameter.
 The probability density function (pdf) of the Gamma 
distribution is fZ (z) = βα zα-1 e-βz/Γ(α), where α > 0 and 
β > 0 are the shape and rate parameters of the Gamma 
distribution, respectively, and Γ(⋅) is the gamma function. 
The CDF of the Gamma distribution does not have a 
specific closed form. It is simply expressed as FZ(z) = 
∫0

z fZ(z) dz (with some abuse of notation), and can be 

evaluated via numerical integration. It is known that the 
skewness of the Gamma distribution depends only on 
the shape parameter α. Hence, we set β = 1 throughout 
this paper for ease of computation. The formulae for the 
mean, standard deviation, and coefficient of skewness of 
the Gamma distribution are (Zwillinger & Kokoska 1999)
                                                          

   (14)

  (15)

and

  (16)

respectively.
 The pdf of the Lognormal distribution is fZ(z) = exp 
[-(ln z -μLN )2/(2σLN

2 )]/(zσLN √2𝜋𝜋 ), where μLN and σLN > 0 
are the location and scale parameters of the Lognormal 
distribution, respectively. The CDF of the Lognormal 
distribution can be shown as FZ(z) = Φ [(ln z -μLN)/σLN]. 
Since the skewness of the Lognormal distribution is 
independent of the location parameter, we set μLN = 0 
for the sake of simplicity. The formulae for the mean, 
standard deviation, and coefficient of skewness of 
the Lognormal distribution are (Zwillinger & Kokoska 
1999)   

 (17)
 
  

(18)

and

    (19)

respectively.

THE IMPACT OF SKEWNESS ON THE PERFORMANCES 
OF THE OSPRT CHART DESIGNED UNDER THE NORMAL 

MODEL

In this section, we analyse the performances of the OSPRT 
chart designed for the Normal distribution in cases where 
non-normal data are used. Prior to the investigation, 
it is necessary to specify the relevant parameters for 
designing the OSPRT chart. In this study, we consider 
a false alarm rate of 0.27%, which is equivalent to an 
in-control ARL (ARL0) of τ = 370.4, and an in-control 

𝑞𝑞0 = 𝜒𝜒12 [
𝑔𝑔+𝛾𝛾
𝜂𝜂2 | (𝛿𝛿+𝑘𝑘𝜂𝜂 )

2
]. 

 

𝑟𝑟𝑢𝑢 = 𝜒𝜒12 [
∆⋅(0.5−𝑢𝑢)+𝛾𝛾

𝜂𝜂2 | (𝛿𝛿+𝑘𝑘𝜂𝜂 )
2
]. 

 

𝐴𝐴𝐴𝐴𝐴𝐴 = 1
1 − 𝑂𝑂𝑂𝑂(𝛿𝛿, 𝜂𝜂) 

 

𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 = √ 𝑂𝑂𝑂𝑂(𝛿𝛿,𝜂𝜂)
[1−𝑂𝑂𝑂𝑂(𝛿𝛿,𝜂𝜂)]2, 

𝑞𝑞0 = 𝜒𝜒12 [
𝑔𝑔+𝛾𝛾
𝜂𝜂2 | (𝛿𝛿+𝑘𝑘𝜂𝜂 )

2
]. 

 

𝑟𝑟𝑢𝑢 = 𝜒𝜒12 [
∆⋅(0.5−𝑢𝑢)+𝛾𝛾

𝜂𝜂2 | (𝛿𝛿+𝑘𝑘𝜂𝜂 )
2
]. 

 

𝐴𝐴𝐴𝐴𝐴𝐴 = 1
1 − 𝑂𝑂𝑂𝑂(𝛿𝛿, 𝜂𝜂) 

 

𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 = √ 𝑂𝑂𝑂𝑂(𝛿𝛿,𝜂𝜂)
[1−𝑂𝑂𝑂𝑂(𝛿𝛿,𝜂𝜂)]2, 

𝑞𝑞0 = 𝜒𝜒12 [
𝑔𝑔+𝛾𝛾
𝜂𝜂2 | (𝛿𝛿+𝑘𝑘𝜂𝜂 )

2
]. 

 

𝑟𝑟𝑢𝑢 = 𝜒𝜒12 [
∆⋅(0.5−𝑢𝑢)+𝛾𝛾

𝜂𝜂2 | (𝛿𝛿+𝑘𝑘𝜂𝜂 )
2
]. 

 

𝐴𝐴𝐴𝐴𝐴𝐴 = 1
1 − 𝑂𝑂𝑂𝑂(𝛿𝛿, 𝜂𝜂) 

 

𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 = √ 𝑂𝑂𝑂𝑂(𝛿𝛿,𝜂𝜂)
[1−𝑂𝑂𝑂𝑂(𝛿𝛿,𝜂𝜂)]2, 

𝑞𝑞0 = 𝜒𝜒12 [
𝑔𝑔+𝛾𝛾
𝜂𝜂2 | (𝛿𝛿+𝑘𝑘𝜂𝜂 )

2
]. 

 

𝑟𝑟𝑢𝑢 = 𝜒𝜒12 [
∆⋅(0.5−𝑢𝑢)+𝛾𝛾

𝜂𝜂2 | (𝛿𝛿+𝑘𝑘𝜂𝜂 )
2
]. 

 

𝐴𝐴𝐴𝐴𝐴𝐴 = 1
1 − 𝑂𝑂𝑂𝑂(𝛿𝛿, 𝜂𝜂) 

 

𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 = √ 𝑂𝑂𝑂𝑂(𝛿𝛿,𝜂𝜂)
[1−𝑂𝑂𝑂𝑂(𝛿𝛿,𝜂𝜂)]2, 

𝜇𝜇0∗ = 𝛼𝛼, 

 

𝜎𝜎0∗ = √𝛼𝛼,                                                            

 

𝜃𝜃 = 2
√𝛼𝛼

,       

𝜇𝜇0∗ = 𝛼𝛼, 

 

𝜎𝜎0∗ = √𝛼𝛼,                                                            

 

𝜃𝜃 = 2
√𝛼𝛼

,       

𝜇𝜇0∗ = 𝛼𝛼, 

 

𝜎𝜎0∗ = √𝛼𝛼,                                                            

 

𝜃𝜃 = 2
√𝛼𝛼

,       

𝜇𝜇0
∗ =𝑒𝑒𝑒𝑒𝑒𝑒  (𝜎𝜎𝐿𝐿𝐿𝐿

2

2 ) ,   (17) 

 

 𝜎𝜎0
∗ = √𝑒𝑒𝑒𝑒𝑒𝑒 (2𝜎𝜎𝐿𝐿𝐿𝐿

2 )  −𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝐿𝐿𝐿𝐿
2 ) ,  (18) 

 

 𝜃𝜃 = [𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝐿𝐿𝐿𝐿
2 ) + 2]√𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝐿𝐿𝐿𝐿

2 ) − 1,   (19) 

𝜇𝜇0
∗ =𝑒𝑒𝑒𝑒𝑒𝑒  (𝜎𝜎𝐿𝐿𝐿𝐿

2

2 ) ,   (17) 

 

 𝜎𝜎0
∗ = √𝑒𝑒𝑒𝑒𝑒𝑒 (2𝜎𝜎𝐿𝐿𝐿𝐿

2 )  −𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝐿𝐿𝐿𝐿
2 ) ,  (18) 

 

 𝜃𝜃 = [𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝐿𝐿𝐿𝐿
2 ) + 2]√𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝐿𝐿𝐿𝐿

2 ) − 1,   (19) 

𝜇𝜇0
∗ =𝑒𝑒𝑒𝑒𝑒𝑒  (𝜎𝜎𝐿𝐿𝐿𝐿

2

2 ) ,   (17) 

 

 𝜎𝜎0
∗ = √𝑒𝑒𝑒𝑒𝑒𝑒 (2𝜎𝜎𝐿𝐿𝐿𝐿

2 )  −𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝐿𝐿𝐿𝐿
2 ) ,  (18) 

 

 𝜃𝜃 = [𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝐿𝐿𝐿𝐿
2 ) + 2]√𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝐿𝐿𝐿𝐿

2 ) − 1,   (19) 
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ASN (ASN0) equal to five. It should be noted that there 
is an infinite number of possible combinations (k, γ) by 
which the OSPRT chart can be constructed. To provide 
a well-rounded exploratory analysis, we consider six 
different combinations of (k, γ) from a multitude of sizes, 
i.e., (k, γ) ∈ {(0.1, 1.5), (0.1, 4.0), (0.5, 2.0), (0.5, 5.0), 
(1.0, 2.5), (1.0, 6.0)}. The control limits (g, h) can then 
be determined via some root-finding algorithms (e.g., the 
Newton-Raphson algorithm) to meet the specifications 
on the ARL0 and ASN0.

Table 1 tabulates the control limits (g, h) of the 
OSPRT chart designed under the Normal model for the 
six pairs of (k, γ), together with the (ARL, SDRL) values 
for δ ∈ {0.0, 0.5, 1.0, 1.5, 2.0} and η ∈ {1.0, 1.5, 2.0}. 
The performance metrics are computed using Equations 
(12) and (13), and all the results have been verified with 
Monte Carlo simulation. As a numeric example, when 
the reference parameters (k, γ) = (0.5, 2.0) are chosen, 

the control limits are calculated as g = –3.060 and h = 
16.896, and the resulting out-of-control ARL (ARL1) and 
out-of-control SDRL (SDRL1) values at (δ, η) = (0.5, 1.5) 
are equal to 1.66 and 1.05, respectively. From Table 1, 
it is observed that different combinations of (k, γ) result 
in varying performances over different shift sizes (δ, η). 
For instance, the reference parameters (k, γ) = (0.1, 1.5) is 
the best combination for the case when only the variance 
shift occurs, i.e., δ = 0.0 and η > 1.0. In particular, the 
associated (ARL1, SDRL1) values are equal to (2.11, 1.53) 
and (1.31, 0.64) at η = 1.5 and η = 2.0, respectively. 
When the expected shift sizes are (δ, η) = (0.5, 1.5), the 
combination (k, γ) = (0.5, 2.0) is preferred as it produces 
the lowest (ARL1, SDRL1) among the six combinations, 
i.e., (ARL1, SDRL1) = (1.66, 1.05). This observation is 
consistent with the optimality property of the OSPRT 
chart, which states that the combination (k, γ) tuned in 
Equations (2) and (3) is optimal with respect to the ARL1 
for any deterministic shift sizes (δ, η).

TABLE 1. Control limits (g, h) and the corresponding (ARL, SDRL) values of the OSPRT chart designed under the Normal 
model, for ARL0=τ = 370.4, ASN0 = 5, and (k, γ) ∈ {(0.1, 1.5), (0.1, 4.0), (0.5, 2.0), (0.5, 5.0), (1.0, 2.5), (1.0, 6.0)}, when the 

underlying distribution is Normal

(k, γ) (0.1, 1.5) (0.1, 4.0) (0.5, 2.0) (0.5, 5.0) (1.0, 2.5) (1.0, 6.0)

(g, h) (–1.876, 15.863) (–13.365, 5.875) (–3.060, 16.896) (–16.779, 6.628) (–1.773, 33.345) (–17.499, 9.806)

δ η (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL)

0.0 1.0 (370.40, 369.90) (370.40, 369.90) (370.40, 369.90) (370.40, 369.90) (370.40, 369.90) (370.40, 369.90)

1.5 (2.11, 1.53) (8.03, 7.52) (2.75, 2.19) (11.38, 10.87) (4.01, 3.48) (12.26, 11.75)

2.0 (1.31, 0.64) (1.84, 1.24) (1.38, 0.73) (2.40, 1.83) (2.08, 1.50) (2.86, 2.30)

0.5 1.0 (17.61, 17.10) (92.38, 91.88) (6.14, 5.62) (59.83, 59.33) (2.67, 2.11) (41.44, 40.93)

1.5 (1.74, 1.13) (5.02, 4.49) (1.66, 1.05) (4.90, 4.37) (2.02, 1.44) (4.07, 3.54)

2.0 (1.27, 0.59) (1.63, 1.01) (1.27, 0.58) (1.79, 1.18) (1.70, 1.09) (1.81, 1.21)

1.0 1.0 (1.80, 1.20) (14.55, 14.04) (1.30, 0.62) (8.74, 8.22) (1.30, 0.62) (4.08, 3.54)

1.5 (1.36, 0.70) (2.37, 1.81) (1.24, 0.54) (2.08, 1.50) (1.45, 0.80) (1.67, 1.05)

2.0 (1.19, 0.48) (1.33, 0.66) (1.16, 0.43) (1.34, 0.67) (1.44, 0.80) (1.30, 0.62)

1.5 1.0 (1.13, 0.38) (2.32, 1.75) (1.04, 0.20) (1.55, 0.93) (1.08, 0.29) (1.10, 0.33)

1.5 (1.15, 0.42) (1.33, 0.66) (1.08, 0.30) (1.21, 0.51) (1.21, 0.50) (1.11, 0.34)

2.0 (1.12, 0.37) (1.13, 0.39) (1.09, 0.31) (1.11, 0.36) (1.28, 0.60) (1.09, 0.31)

2.0 1.0 (1.02, 0.14) (1.05, 0.22) (1.00, 0.06) (1.01, 0.10) (1.02, 0.14) (1.00, 0.03)

1.5 (1.06, 0.25) (1.05, 0.24) (1.03, 0.16) (1.03, 0.17) (1.10, 0.33) (1.01, 0.11)

2.0 (1.07, 0.27) (1.04, 0.21) (1.04, 0.21) (1.03, 0.18) (1.17, 0.45) (1.02, 0.15)
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To evaluate the performances of the Normal-
designed OSPRT chart under skewed distributions, we 
first select a set of skewness levels θ to be considered 
in our study. In this paper, we present results for θ ∈ 
{1.0, 2.0, 3.0} using both the Gamma and Lognormal 
distributions. Note that the shape or scale parameters of 
the Gamma and Lognormal distributions can be tuned to 
achieve a specific degree of skewness. For example, to 
achieve a skewness of θ = 2.0, the shape parameter α of 
the Gamma distribution must satisfy the equation 2/√𝛼𝛼 

 

[𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝐿𝐿𝐿𝐿
2 )  + 2]√𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝐿𝐿𝐿𝐿

2 )  − 1 

 
= 2.0 (from Equation (16)), giving α = 1; whereas the 
scale parameter 

2/√𝛼𝛼 

 

[𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝐿𝐿𝐿𝐿
2 )  + 2]√𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝐿𝐿𝐿𝐿

2 )  − 1 of the Lognormal distribution must 

satisfy the equation [𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝐿𝐿𝐿𝐿
2 )  + 2]√𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝐿𝐿𝐿𝐿

2 )  − 1 
= 2.0 (from Equation (19)), giving σLN = 0.5514 with the 

aid of some root-finding algorithms. Tables 2 and 3 show 
the (ARL, SDRL) values of the Normal-designed OSPRT 
chart in cases where the underlying distributions of 
data are Gamma and Lognormal, respectively, for θ ∈ 
{1.0, 2.0, 3.0}. As a numeric example, when θ = 2.0 and 
α = 1.0000 for the Gamma distribution, the (ARL1, SDRL1) 
values of the OSPRT chart with reference parameters 
(k, γ) = (1.0, 2.5) are equal to (1.84, 1.24) at (δ, η) = (1.0, 
1.5). It is worth noting that, since the data do not follow 
the usual Normal distribution, the run-length properties of 
the OSPRT chart cannot be evaluated using the formulae 
detailed in Equations (6), (7), (10), and (11). Therefore, in 
Tables 2 and 3, we have produced all the results through 
Monte Carlo simulation with 100,000 replications. 

TABLE 2. The (ARL, SDRL) values of the OSPRT chart designed under the Normal model, for ARL0 = τ = 370.4, ASN0 = 5, 
and (k, γ) ∈ {(0.1, 1.5), (0.1, 4.0), (0.5, 2.0), (0.5, 5.0), (1.0, 2.5), (1.0, 6.0)}, when the underlying distribution is Gamma with 

skewness θ ∈ {1.0, 2.0, 3.0}

(k, γ) (0.1, 1.5) (0.1, 4.0) (0.5, 2.0) (0.5, 5.0) (1.0, 2.5) (1.0, 6.0)

(g, h) (–1.876, 15.863) (–13.365, 5.875) (–3.060, 16.896) (–16.779, 6.628) (–1.773, 33.345) (–17.499, 9.806)

α θ δ η (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL)

4.0000 1.0 0.0 1.0 (61.95, 61.44) (47.14, 46.64) (46.22, 45.72) (41.15, 40.64) (76.92, 76.42) (39.98, 39.48)

1.5 (2.64, 2.08) (6.74, 6.22) (4.10, 3.56) (7.01, 6.49) (6.73, 6.21) (7.01, 6.49)

2.0 (1.36, 0.70) (2.25, 1.67) (1.67, 1.06) (2.83, 2.28) (3.10, 2.55) (3.13, 2.59)

0.5 1.0 (13.80, 13.29) (19.96, 19.46) (6.80, 6.28) (16.15, 15.65) (3.66, 3.12) (13.26, 12.75)

1.5 (2.51, 1.95) (4.35, 3.82) (2.44, 1.87) (4.06, 3.53) (2.89, 2.34) (3.66, 3.12)

2.0 (1.45, 0.81) (2.05, 1.47) (1.59, 0.97) (2.17, 1.60) (2.38, 1.81) (2.18, 1.60)

1.0 1.0 (2.49, 1.93) (7.34, 6.83) (1.51, 0.88) (5.46, 4.93) (1.33, 0.66) (3.49, 2.95)

1.5 (1.80, 1.20) (2.59, 2.03) (1.52, 0.89) (2.28, 1.71) (1.68, 1.07) (1.91, 1.32)

2.0 (1.42, 0.77) (1.67, 1.05) (1.39, 0.74) (1.63, 1.02) (1.81, 1.21) (1.55, 0.93)

1.5 1.0 (1.19, 0.47) (2.37, 1.80) (1.03, 0.18) (1.69, 1.08) (1.02, 0.15) (1.15, 0.42)

1.5 (1.32, 0.65) (1.57, 0.95) (1.15, 0.41) (1.38, 0.72) (1.22, 0.52) (1.19, 0.48)

2.0 (1.29, 0.61) (1.34, 0.67) (1.21, 0.50) (1.27, 0.59) (1.43, 0.78) (1.20, 0.49)

2.0 1.0 (1.01, 0.09) (1.08, 0.30) (1.00, 0.01) (1.01, 0.12) (1.00, 0.00) (1.00, 0.02)

1.5 (1.09, 0.32) (1.12, 0.37) (1.02, 0.16) (1.06, 0.24) (1.05, 0.22) (1.02, 0.13)

2.0 (1.15, 0.42) (1.13, 0.38) (1.08, 0.30) (1.08, 0.30) (1.19, 0.48) (1.05, 0.23)

1.0000 2.0 0.0 1.0 (34.62, 34.12) (22.37, 21.87) (27.09, 26.58) (20.62, 20.11) (48.79, 48.28) (20.39, 19.88)

1.5 (4.60, 4.07) (6.01, 5.49) (6.03, 5.51) (6.14, 5.62) (10.16, 9.64) (6.27, 5.75)

2.0 (1.63, 1.02) (2.90, 2.35) (2.71, 2.15) (3.27, 2.73) (5.44, 4.92) (3.51, 2.97)

0.5 1.0 (13.51, 13.00) (12.52, 12.01) (7.76, 7.24) (10.79, 10.27) (4.89, 4.36) (9.43, 8.91)

1.5 (4.22, 3.69) (4.41, 3.87) (3.58, 3.03) (4.11, 3.57) (4.01, 3.48) (3.83, 3.29)

2.0 (2.21, 1.64) (2.59, 2.03) (2.48, 1.91) (2.61, 2.05) (3.58, 3.04) (2.60, 2.04)

continue to next page
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1.0 1.0 (3.36, 2.81) (6.18, 5.65) (1.73, 1.12) (4.89, 4.36) (1.25, 0.56) (3.51, 2.97)

1.5 (2.53, 1.97) (2.93, 2.37) (1.89, 1.29) (2.58, 2.02) (1.84, 1.24) (2.20, 1.62)

2.0 (2.11, 1.53) (2.09, 1.51) (1.86, 1.26) (1.97, 1.39) (2.22, 1.64) (1.85, 1.25)

1.5 1.0 (1.19, 0.48) (2.57, 2.00) (1.01, 0.07) (1.87, 1.27) (1.00, 0.00) (1.21, 0.50)

1.5 (1.50, 0.86) (1.84, 1.24) (1.16, 0.43) (1.57, 0.94) (1.09, 0.31) (1.29, 0.61)

2.0 (1.61, 0.99) (1.61, 0.99) (1.35, 0.69) (1.47, 0.83) (1.44, 0.79) (1.33, 0.66)

2.0 1.0 (1.00, 0.00) (1.12, 0.36) (1.00, 0.00) (1.01, 0.11) (1.00, 0.00) (1.00, 0.00)

1.5 (1.06, 0.24) (1.20, 0.49) (1.00, 0.03) (1.08, 0.29) (1.00, 0.00) (1.01, 0.10)

2.0 (1.23, 0.53) (1.24, 0.55) (1.06, 0.26) (1.14, 0.41) (1.04, 0.22) (1.06, 0.26)

0.4444 3.0 0.0 1.0 (28.75, 28.25) (16.84, 16.34) (23.28, 22.77) (15.86, 15.35) (44.23, 43.73) (15.81, 15.30)

1.5 (7.42, 6.90) (6.23, 5.71) (7.92, 7.41) (6.20, 5.67) (13.50, 12.99) (6.44, 5.92)

2.0 (2.88, 2.32) (3.52, 2.98) (4.39, 3.85) (3.83, 3.29) (8.23, 7.72) (4.13, 3.59)

0.5 1.0 (14.38, 13.87) (10.78, 10.26) (9.00, 8.48) (9.54, 9.02) (5.90, 5.38) (8.60, 8.08)

1.5 (5.86, 5.34) (4.77, 4.24) (4.74, 4.21) (4.45, 3.92) (5.37, 4.84) (4.19, 3.65)

2.0 (3.82, 3.28) (3.16, 2.61) (3.54, 3.00) (3.07, 2.53) (4.87, 4.34) (3.06, 2.51)

1.0 1.0 (4.35, 3.82) (6.12, 5.59) (1.91, 1.32) (4.95, 4.42) (1.12, 0.36) (3.74, 3.20)

1.5 (3.36, 2.82) (3.35, 2.81) (2.25, 1.67) (2.95, 2.39) (1.73, 1.13) (2.52, 1.96)

2.0 (2.89, 2.33) (2.52, 1.96) (2.33, 1.76) (2.34, 1.77) (2.52, 1.95) (2.16, 1.58)

1.5 1.0 (1.11, 0.34) (2.84, 2.29) (1.00, 0.00) (2.07, 1.49) (1.00, 0.00) (1.25, 0.56)

1.5 (1.60, 0.98) (2.13, 1.55) (1.09, 0.31) (1.77, 1.16) (1.00, 0.00) (1.37, 0.72)

2.0 (1.90, 1.31) (1.90, 1.30) (1.36, 0.69) (1.68, 1.07) (1.21, 0.51) (1.45, 0.81)

2.0 1.0 (1.00, 0.00) (1.14, 0.40) (1.00, 0.00) (1.01, 0.08) (1.00, 0.00) (1.00, 0.00)

1.5 (1.00, 0.01) (1.27, 0.58) (1.00, 0.00) (1.09, 0.31) (1.00, 0.00) (1.00, 0.05)

2.0 (1.13, 0.39) (1.35, 0.68) (1.00, 0.04) (1.19, 0.47) (1.00, 0.00) (1.05, 0.23)

TABLE 3. The (ARL, SDRL) values of the OSPRT chart designed under the Normal model, for ARL0 = τ = 370.4, ASN0 = 5, and 
(k, γ) ∈ {(0.1, 1.5), (0.1, 4.0), (0.5, 2.0), (0.5, 5.0), (1.0, 2.5), (1.0, 6.0)}, when the underlying distribution is Lognormal with 

skewness θ ∈ {1.0, 2.0, 3.0}

(k, γ ) (0.1, 1.5) (0.1, 4.0) (0.5, 2.0) (0.5, 5.0) (1.0, 2.5) (1.0, 6.0)

(g, h) (–1.876, 15.863) (–13.365, 5.875) (–3.060, 16.896) (–16.779, 6.628) (–1.773, 33.345)
(–17.499, 

9.806)

σLN θ δ η (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL)

0.3143 1.0 0.0 1.0 (59.05, 58.54) (44.64, 44.14) (45.23, 44.73) (39.54, 39.03) (75.70, 75.20) (38.58, 38.08)

1.5 (2.72, 2.16) (6.86, 6.34) (4.16, 3.63) (7.18, 6.67) (6.75, 6.23) (7.21, 6.69)

2.0 (1.39, 0.73) (2.26, 1.68) (1.69, 1.08) (2.87, 2.32) (3.07, 2.52) (3.20, 2.65)

0.5 1.0 (14.11, 13.60) (19.91, 19.40) (6.92, 6.40) (16.24, 15.73) (3.62, 3.08) (13.41, 12.90)

1.5 (2.51, 1.95) (4.46, 3.93) (2.42, 1.85) (4.17, 3.64) (2.83, 2.28) (3.75, 3.21)

2.0 (1.46, 0.82) (2.07, 1.49) (1.58, 0.96) (2.20, 1.62) (2.32, 1.75) (2.20, 1.63)

1.0 1.0 (2.47, 1.90) (7.52, 7.00) (1.49, 0.86) (5.59, 5.06) (1.32, 0.65) (3.56, 3.02)

1.5 (1.77, 1.16) (2.64, 2.08) (1.49, 0.86) (2.32, 1.74) (1.65, 1.03) (1.92, 1.33)

2.0 (1.40, 0.75) (1.67, 1.06) (1.37, 0.71) (1.63, 1.02) (1.75, 1.15) (1.55, 0.92)

continue from previous page
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1.5 1.0 (1.18, 0.46) (2.40, 1.84) (1.03, 0.18) (1.70, 1.09) (1.03, 0.17) (1.15, 0.41)

1.5 (1.29, 0.62) (1.57, 0.95) (1.14, 0.39) (1.38, 0.72) (1.21, 0.51) (1.19, 0.47)

2.0 (1.27, 0.58) (1.33, 0.66) (1.18, 0.47) (1.26, 0.58) (1.40, 0.74) (1.19, 0.48)

2.0 1.0 (1.01, 0.10) (1.08, 0.30) (1.00, 0.02) (1.01, 0.12) (1.00, 0.02) (1.00, 0.02)

1.5 (1.08, 0.30) (1.12, 0.36) (1.02, 0.16) (1.05, 0.24) (1.05, 0.24) (1.01, 0.12)

2.0 (1.14, 0.40) (1.12, 0.36) (1.07, 0.28) (1.08, 0.29) (1.19, 0.47) (1.05, 0.22)

0.5514 2.0 0.0 1.0 (37.46, 36.96) (24.31, 23.80) (30.03, 29.53) (22.54, 22.03) (52.63, 52.13) (22.31, 21.81)

1.5 (4.48, 3.95) (6.59, 6.07) (6.06, 5.54) (6.73, 6.21) (10.05, 9.54) (6.82, 6.30)

2.0 (1.63, 1.01) (2.97, 2.42) (2.48, 1.92) (3.41, 2.87) (4.85, 4.32) (3.68, 3.14)

0.5 1.0 (14.78, 14.27) (13.91, 13.40) (8.10, 7.59) (11.95, 11.44) (4.59, 4.06) (10.42, 9.90)

1.5 (3.93, 3.39) (4.72, 4.19) (3.40, 2.85) (4.39, 3.86) (3.67, 3.13) (4.05, 3.51)

2.0 (1.97, 1.38) (2.61, 2.05) (2.20, 1.62) (2.65, 2.09) (3.16, 2.61) (2.61, 2.05)

1.0 1.0 (3.18, 2.64) (6.77, 6.25) (1.64, 1.03) (5.30, 4.77) (1.26, 0.57) (3.70, 3.16)

1.5 (2.32, 1.75) (3.02, 2.47) (1.74, 1.14) (2.64, 2.08) (1.72, 1.12) (2.20, 1.63)

2.0 (1.83, 1.23) (2.06, 1.47) (1.67, 1.06) (1.94, 1.36) (2.02, 1.43) (1.80, 1.20)

1.5 1.0 (1.18, 0.45) (2.65, 2.09) (1.01, 0.11) (1.88, 1.29) (1.00, 0.04) (1.19, 0.48)

1.5 (1.40, 0.75) (1.81, 1.21) (1.14, 0.40) (1.54, 0.91) (1.14, 0.39) (1.26, 0.57)

2.0 (1.47, 0.83) (1.55, 0.92) (1.27, 0.59) (1.42, 0.77) (1.40, 0.75) (1.28, 0.60)

2.0 1.0 (1.00, 0.02) (1.10, 0.34) (1.00, 0.00) (1.01, 0.11) (1.00, 0.00) (1.00, 0.00)

1.5 (1.07, 0.26) (1.17, 0.45) (1.01, 0.08) (1.07, 0.27) (1.00, 0.07) (1.01, 0.10)

2.0 (1.18, 0.46) (1.20, 0.49) (1.07, 0.27) (1.12, 0.36) (1.11, 0.35) (1.05, 0.23)

0.7156 3.0 0.0 1.0 (34.97, 34.46) (20.56, 20.05) (28.02, 27.52) (19.30, 18.79) (50.29, 49.79) (19.23, 18.72)

1.5 (6.66, 6.14) (6.97, 6.45) (7.80, 7.28) (7.03, 6.51) (12.95, 12.44) (7.18, 6.66)

2.0 (2.18, 1.60) (3.57, 3.03) (3.54, 3.00) (3.93, 3.39) (6.79, 6.27) (4.17, 3.63)

0.5 1.0 (16.25, 15.74) (12.92, 12.41) (9.35, 8.83) (11.29, 10.78) (5.45, 4.92) (10.06, 9.55)

1.5 (5.37, 4.84) (5.18, 4.65) (4.27, 3.74) (4.79, 4.26) (4.39, 3.85) (4.45, 3.92)

2.0 (2.77, 2.22) (3.09, 2.54) (2.88, 2.33) (3.06, 2.51) (3.88, 3.34) (2.99, 2.44)

1.0 1.0 (3.84, 3.30) (6.93, 6.41) (1.74, 1.13) (5.51, 4.99) (1.19, 0.47) (3.98, 3.44)

1.5 (2.81, 2.25) (3.41, 2.87) (1.93, 1.34) (2.96, 2.40) (1.71, 1.10) (2.46, 1.89)

2.0 (2.30, 1.73) (2.39, 1.83) (1.92, 1.33) (2.21, 1.64) (2.13, 1.55) (2.02, 1.43)

1.5 1.0 (1.14, 0.40) (2.91, 2.36) (1.00, 0.05) (2.05, 1.47) (1.00, 0.00) (1.22, 0.51)

1.5 (1.45, 0.81) (2.02, 1.44) (1.11, 0.35) (1.67, 1.06) (1.05, 0.24) (1.31, 0.63)

2.0 (1.60, 0.98) (1.73, 1.13) (1.29, 0.62) (1.55, 0.92) (1.32, 0.65) (1.35, 0.69)

2.0 1.0 (1.00, 0.00) (1.12, 0.36) (1.00, 0.00) (1.01, 0.09) (1.00, 0.00) (1.00, 0.00)

1.5 (1.03, 0.18) (1.21, 0.50) (1.00, 0.02) (1.07, 0.27) (1.00, 0.00) (1.01, 0.07)

2.0 (1.17, 0.45) (1.25, 0.56) (1.04, 0.20) (1.14, 0.40) (1.03, 0.17) (1.05, 0.22)

continue from previous page
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From Tables 2 and 3, it is found that the in-control 
performance of the OSPRT chart designed under the 
Normal model deteriorates rapidly as the skewness 
increases. For instance, when the skewness increases 
from zero to θ = 1, the ARL0 value falls from 370.4 
to values ranging from 40 to 80, for both the Gamma 
and Lognormal distributions (Tables 2 & 3). Similar 
observations have also been captured for the in-control 
SDRL (SDRL0) performance, dropping from 369.90 
to almost the same range of values as the preceding 
observation. This is in fact an alarming sign, since the 
ARL0 has shrunk by almost 90%, implying that the false 
alarms are occurring at a rate 10 times as high as the 
original rate. As the perceived skewness continues to 
increase (i.e., θ = 2, 3), both the ARL0 and SDRL0 values 
shrink further, reaching values as low as 15 for both 
the Gamma and Lognormal distributions. This can be 
endangering to the operation of a production line, as 
excessive false alarms may diminish the confidence of 
operating personnel (Montgomery 2019).

Referring to the out-of-control performances, one 
observes a general decline in the (ARL1, SDRL1) values 
as compared to those in Table 1, presumably due to the 
tremendous fall in the ARL0 values as a result of skewed 
data distributions. For example, when the skewness 
increases from zero to θ = 1 for the Gamma distribution, 
the (ARL1, SDRL1) values at (δ, η) = (0.5, 1.0) are found 
to drop from (92.38, 91.88) (Table 1) to (19.96, 19.46) 
(Table 2), when (k, γ) = (0.1, 4.0) have been used. 
However, there are some exceptions to this observation, 
specifically for cases with (k, γ) ∈ {(0.5, 2.0), (1.0, 
2.5)}. For instance, when the skewness increases from 
zero to θ = 1 for the Lognormal distribution, the (ARL1, 
SDRL1) values at (δ, η) = (0.0, 1.5) are found to increase 
from (4.01, 3.48) (Table 1) to (6.75, 6.23) (Table 3), when 
(k, γ) = (1.0, 2.5) have been used. It is interesting to note 
that, generally, both the ARL0 and ARL1 values decrease 
as data become more positively skewed. This could be 
explained by the fact that the ‘squared’ operation in 
Equation (1) somehow exacerbates the skewed condition, 
making the control statistic more likely to fall in the 
out-of-control region. While a decreased ARL1 might 
seem to indicate a better detection ability, the worsening 
in-control performance due to skewed distributions 
is unacceptable and should not be neglected. In the 
following section, we will introduce a new method for 
adjusting the control limits of the OSPRT chart to attain 
the desired in-control performance.

THE OSPRT CHART WITH SKEWNESS-CORRECTED 
CONTROL LIMITS

In this section, we outline the steps required to compute 
the new control limits for the OSPRT chart based on 
skewness correction. The method involves adjusting both 
the control limits (i.e., g and h) so that the constraints 
on ARL0 and ASN0 are satisfied under non-Normal 
conditions. A rough idea of the implementation is as 
follows: Suppose that the ARL0 drops from 370.4 to 40 
as a result of an increased skewness. This means that 
observations from the in-control process are now more 
likely to fall in the rejection region of the OSPRT chart. 
To regain the desired level of in-control performance, it 
is necessary to increase the upper control limit h so that 
the control statistic has a lower chance of falling outside 
of h, thus pulling up the ARL0. The same mechanism 
applies to the adjustment of g in the effort of bringing 
the ASN0 back to the desired level. 

The step-by-step procedure for adjusting the 
control limits of the OSPRT chart based on skewness 
correction is detailed as follows: Step 1: Specify four 
design specifications, i.e., k, γ, τ, and the desired in-
control ASN0 (n). Step 2: Initialise the values of g′ and 
h′. We recommend setting the initial values of g′ and h′ 
equal to the values of g and h obtained under the full 
Normal model, respectively. Step 3: Adjust the value 
of h′ to satisfy the constraint ARL0 = τ while keeping 
the value of g′ fixed. If the simulated value of ARL0 is 
smaller than τ, increase the value of h′; whereas if the 
simulated value of ARL0 is larger than τ, reduce the 
value of h′. Step 4: Adjust the value of g′ to satisfy the 
constraint ASN0 = n while keeping the value of h′ fixed. 
If the simulated value of ASN0 is larger than n, increase 
the value of g′; whereas if the simulated value of ASN0 
is smaller than n, reduce the value of g′. Step 5: Repeat 
Steps 3 and 4 until both the values of g′ and h′ converge.

Upon running these algorithm, we found that 
the value of h′ increases considerably as the level of 
skewness increases, whereas the value of g′ remains 
rather stable and does not deviate much from the original 
value g. From this observation, it may be useful to 
customise the size of increment (or decrement) for each 
of g′ and h′ in order to achieve optimum computational 
efficiency.

Tables 4 and 5 tabulate the adjusted control limits 
(g′, h′), as well as the (ARL, SDRL) performances of the 
skewness-corrected OSPRT chart, for six combinations of 
reference parameters (k, γ) ∈ {(0.1, 1.5), (0.1, 4.0), (0.5, 
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2.0), (0.5, 5.0), (1.0, 2.5), (1.0, 6.0)}. Note that Table 4 
shows results for the Gamma distribution with varying 
shape parameter α, whereas Table 5 shows results for 
the Lognormal distribution with varying scale parameter 
σLN. Skewness correction has been applied to both 
distributions with respect to three levels of skewness, 
i.e., θ ∈ {1.0, 2.0, 3.0}. As a numeric example, when (k, 
γ) = (0.5, 5.0) is chosen for Lognormal data with skewness 

θ = 2.0 (i.e., σLN = 0.5514), the corrected control limits are 
computed as (g′, h′) = (–16.840, 48.314) (Table 5) using 
the algorithm detailed in the preceding paragraph. It is 
worth noting that the (ARL0, SDRL0) values (= (370.40, 
369.90)) of the skewness-corrected OSPRT chart under 
the Lognormal distribution now resemble those of the 
original OSPRT chart under the full Normal model (Table 
1). The same applies to the Gamma distribution and all 
other levels of skewness.

TABLE 4. Skewness-corrected control limits (g′, h′) and the corresponding (ARL, SDRL) values of the OSPRT chart under the 
Gamma distribution, for ARL0 = τ = 370.4, ASN0 = 5, (k, γ) ∈ {(0.1, 1.5), (0.1, 4.0), (0.5, 2.0), (0.5, 5.0), (1.0, 2.5), (1.0, 6.0)}, 

and θ ∈ {1.0, 2.0, 3.0}

(k, γ) (0.1, 1.5) (0.1, 4.0) (0.5, 2.0) (0.5, 5.0) (1.0, 2.5) (1.0, 6.0)

(g′, h′) (g′, h′) (g′, h′) (g′, h′) (g′, h′) (g′, h′)

a θ δ η (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL)

(–1.927, 
31.465)

(–13.431, 
17.735)

(–3.114, 
36.300)

(–16.790, 
20.415)

(–1.880, 
58.868)

(–17.423, 
25.894)

4.0000 1.0 0.0 1.0 (370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

(370.34, 
369.84)

(370.40, 
369.90)

(370.40, 
369.90)

1.5 (2.63, 2.07) (17.63, 17.13) (4.75, 4.22) (20.02, 19.52) (6.97, 6.45) (19.75, 19.24)

2.0 (1.35, 0.69) (3.18, 2.64) (1.66, 1.04) (4.48, 3.95) (3.02, 2.47) (5.03, 4.51)

0.5 1.0 (30.28, 29.77) (129.54, 
129.04)

(11.71, 11.19) (112.99, 
112.49)

(3.57, 3.03) (83.85, 83.35)

1.5 (2.50, 1.94) (9.42, 8.91) (2.48, 1.91) (9.12, 8.61) (2.82, 2.27) (7.46, 6.94)

2.0 (1.44, 0.79) (2.68, 2.12) (1.58, 0.96) (3.01, 2.46) (2.32, 1.75) (2.93, 2.38)

1.0 1.0 (2.49, 1.92) (31.86, 31.36) (1.50, 0.87) (22.13, 21.62) (1.30, 0.63) (9.13, 8.62)

1.5 (1.78, 1.18) (4.24, 3.71) (1.51, 0.88) (3.63, 3.09) (1.64, 1.03) (2.58, 2.02)

2.0 (1.41, 0.75) (1.96, 1.37) (1.38, 0.73) (1.95, 1.36) (1.77, 1.17) (1.77, 1.17)

1.5 1.0 (1.18, 0.46) (4.49, 3.96) (1.03, 0.17) (2.46, 1.89) (1.02, 0.13) (1.19, 0.48)

1.5 (1.31, 0.64) (1.88, 1.29) (1.14, 0.40) (1.57, 0.94) (1.20, 0.49) (1.24, 0.55)

2.0 (1.28, 0.60) (1.43, 0.79) (1.20, 0.49) (1.35, 0.69) (1.40, 0.75) (1.24, 0.55)

2.0 1.0 (1.01, 0.09) (1.10, 0.33) (1.00, 0.01) (1.02, 0.12) (1.00, 0.00) (1.00, 0.02)

1.5 (1.09, 0.31) (1.15, 0.41) (1.02, 0.15) (1.06, 0.26) (1.04, 0.20) (1.02, 0.13)

2.0 (1.15, 0.42) (1.15, 0.41) (1.08, 0.29) (1.10, 0.32) (1.18, 0.46) (1.05, 0.24)

(–2.091, 
57.039)

(–13.626, 
37.099)

(–3.240, 
62.747)

(–16.656, 
40.956)

(–2.002, 
90.972)

(–17.415, 
48.490)

1.0000 2.0 0.0 1.0
(370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

1.5 (4.76, 4.23) (25.05, 24.55) (8.67, 8.16) (28.14, 27.64) (11.86, 11.35) (28.11, 27.61)

continue to next page
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2.0 (1.57, 0.94) (5.46, 4.94) (2.70, 2.14) (7.22, 6.70) (5.10, 4.57) (7.80, 7.29)

0.5 1.0 (49.29, 48.79) (175.16, 
174.66)

(19.46, 18.95) (156.30, 
155.80)

(4.52, 3.99) (121.75, 
121.25)

1.5 (4.34, 3.80) (15.21, 14.70) (3.89, 3.35) (14.66, 14.15) (3.79, 3.25) (12.03, 11.52)

2.0 (2.11, 1.53) (4.49, 3.95) (2.43, 1.87) (4.90, 4.37) (3.43, 2.88) (4.61, 4.08)

1.0 1.0 (3.33, 2.79) (57.76, 57.25) (1.68, 1.06) (41.18, 40.67) (1.22, 0.51) (17.09, 16.58)

1.5 (2.47, 1.90) (7.17, 6.65) (1.84, 1.25) (6.02, 5.50) (1.70, 1.09) (3.91, 3.37)

2.0 (2.04, 1.45) (3.09, 2.54) (1.83, 1.23) (2.95, 2.40) (2.10, 1.52) (2.48, 1.91)

1.5 1.0 (1.15, 0.42) (8.35, 7.84) (1.00, 0.06) (3.88, 3.34) (1.00, 0.00) (1.28, 0.60)

1.5 (1.45, 0.81) (2.74, 2.18) (1.14, 0.40) (2.09, 1.51) (1.07, 0.28) (1.39, 0.74)

2.0 (1.57, 0.95) (1.94, 1.35) (1.32, 0.65) (1.74, 1.13) (1.35, 0.69) (1.43, 0.79)

2.0 1.0 (1.00, 0.00) (1.14, 0.40) (1.00, 0.00) (1.01, 0.12) (1.00, 0.00) (1.00, 0.00)

1.5 (1.04, 0.20) (1.25, 0.56) (1.00, 0.02) (1.10, 0.33) (1.00, 0.00) (1.01, 0.11)

2.0 (1.20, 0.49) (1.30, 0.62) (1.05, 0.24) (1.18, 0.46) (1.03, 0.19) (1.07, 0.27)

(–2.298, 
87.099)

(–13.516, 
60.378)

(–3.350, 
93.100)

(–16.555, 
65.286)

(–2.168, 
125.501)

(–17.354, 
74.624)

0.4444 3.0 0.0 1.0 (370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

1.5 (8.42, 7.90) (33.14, 32.63) (14.37, 13.86) (36.00, 35.49) (17.61, 17.11) (36.80, 36.29)

2.0 (2.59, 2.03) (8.37, 7.85) (4.55, 4.02) (10.53, 10.02) (8.32, 7.80) (11.46, 10.95)

0.5 1.0 (71.86, 71.36)
(207.60, 
207.10)

(28.48, 27.98)
(187.13, 
186.63)

(5.29, 4.77)
(150.68, 
150.18)

1.5 (6.67, 6.15) (21.57, 21.06) (5.69, 5.16) (20.82, 20.31) (4.59, 4.05) (17.18, 16.68)

2.0 (3.48, 2.94) (6.94, 6.42) (3.68, 3.14) (7.24, 6.72) (4.45, 3.92) (6.73, 6.21)

1.0 1.0 (4.22, 3.68) (82.81, 82.31) (1.83, 1.23) (60.24, 59.74) (1.07, 0.28) (26.49, 25.98)

1.5 (3.18, 2.63) (10.83, 10.32) (2.12, 1.54) (9.02, 8.50) (1.63, 1.02) (5.60, 5.07)

2.0 (2.76, 2.20) (4.60, 4.07) (2.26, 1.68) (4.28, 3.74) (1.99, 1.40) (3.37, 2.83)

1.5 1.0 (1.06, 0.26) (13.50, 12.99) (1.00, 0.00) (5.63, 5.10) (1.00, 0.00) (1.35, 0.69)

1.5 (1.43, 0.79) (3.87, 3.34) (1.07, 0.27) (2.72, 2.17) (1.00, 0.00) (1.53, 0.90)

2.0 (1.77, 1.17) (2.63, 2.07) (1.31, 0.64) (2.21, 1.63) (1.14, 0.40) (1.63, 1.01)

2.0 1.0 (1.00, 0.00) (1.18, 0.46) (1.00, 0.00) (1.01, 0.09) (1.00, 0.00) (1.00, 0.00)

1.5 (1.00, 0.00) (1.35, 0.69) (1.00, 0.00) (1.11, 0.35) (1.00, 0.00) (1.00, 0.05)

2.0 (1.10, 0.32) (1.46, 0.82) (1.00, 0.03) (1.24, 0.55) (1.00, 0.00) (1.06, 0.24)

continue from previous page
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TABLE 5. Skewness-corrected control limits (g′, h′) and the corresponding (ARL, SDRL) values of the OSPRT chart under the 
Lognormal distribution, for ARL0 =  τ = 370.4, ASN0 = 5, (k, γ) ∈ {(0.1, 1.5), (0.1, 4.0), (0.5, 2.0), (0.5, 5.0), (1.0, 2.5), (1.0, 

6.0)}, and θ ∈ {1.0, 2.0, 3.0}

(k, γ) (0.1, 1.5) (0.1, 4.0) (0.5, 2.0) (0.5, 5.0) (1.0, 2.5) (1.0, 6.0)

(g′, h′) (g′, h′) (g′, h′) (g′, h′) (g′, h′) (g′, h′)

σLN θ δ η (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL)

(–1.939, 
33.862)

(–13.438, 
19.931)

(–3.136, 
38.611)

(–16.815, 
22.706)

(–1.888, 
60.934)

(–17.420, 
28.367)

0.3143 1.0 0.0 1.0
(370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

1.5 (2.72, 2.16) (20.20, 19.69) (4.89, 4.36) (22.96, 22.45) (6.99, 6.47) (22.61, 22.10)

2.0 (1.37, 0.72) (3.41, 2.87) (1.67, 1.06) (4.88, 4.35) (2.98, 2.43) (5.49, 4.96)

0.5 1.0 (33.72, 33.22)
(146.19, 
145.69)

(12.52, 12.01)
(127.72, 
127.22)

(3.52, 2.98) (96.06, 95.56)

1.5 (2.50, 1.93) (10.84, 10.33) (2.45, 1.88) (10.45, 9.94) (2.75, 2.19) (8.40, 7.88)

2.0 (1.45, 0.81) (2.83, 2.28) (1.57, 0.94) (3.20, 2.65) (2.25, 1.68) (3.09, 2.54)

1.0 1.0 (2.46, 1.89) (38.81, 38.31) (1.48, 0.84) (26.66, 26.16) (1.29, 0.61) (10.55, 10.04)

1.5 (1.75, 1.14) (4.69, 4.16) (1.48, 0.84) (3.95, 3.41) (1.61, 0.99) (2.70, 2.14)

2.0 (1.39, 0.74) (2.01, 1.43) (1.35, 0.69) (2.00, 1.41) (1.71, 1.11) (1.79, 1.19)

1.5 1.0 (1.17, 0.45) (5.06, 4.54) (1.03, 0.17) (2.61, 2.05) (1.02, 0.15) (1.19, 0.48)

1.5 (1.28, 0.60) (1.93, 1.34) (1.13, 0.38) (1.59, 0.96) (1.20, 0.48) (1.24, 0.54)

2.0 (1.26, 0.57) (1.43, 0.78) (1.18, 0.46) (1.35, 0.69) (1.37, 0.71) (1.23, 0.53)

2.0 1.0 (1.01, 0.09) (1.10, 0.33) (1.00, 0.01) (1.01, 0.12) (1.00, 0.01) (1.00, 0.02)

1.5 (1.08, 0.29) (1.14, 0.40) (1.02, 0.15) (1.06, 0.25) (1.05, 0.22) (1.02, 0.13)

2.0 (1.13, 0.39) (1.14, 0.39) (1.07, 0.27) (1.09, 0.31) (1.17, 0.45) (1.05, 0.23)

(–2.099, 
63.508)

(–13.634, 
44.192)

(–3.303, 
69.182)

(–16.840, 
48.314)

(–2.029, 
96.178)

(–17.458, 
56.164)

0.5514 2.0 0.0 1.0
(370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

1.5 (4.61, 4.08) (33.53, 33.02) (8.85, 8.33) (37.51, 37.01) (11.37, 10.86) (37.20, 36.70)

2.0 (1.57, 0.94) (6.40, 5.88) (2.42, 1.86) (8.77, 8.26) (4.54, 4.01) (9.55, 9.04)

0.5 1.0 (60.19, 59.69)
(207.32, 
206.82)

(21.80, 21.30)
(185.53, 
185.03)

(4.25, 3.71)
(149.25, 
148.75)

1.5 (3.95, 3.42) (20.43, 19.93) (3.57, 3.03) (19.57, 19.07) (3.43, 2.89) (15.64, 15.13)

2.0 (1.88, 1.29) (5.06, 4.53) (2.13, 1.56) (5.60, 5.07) (2.95, 2.40) (5.13, 4.60)

1.0 1.0 (3.12, 2.57) (79.63, 79.13) (1.58, 0.96) (56.95, 56.45) (1.20, 0.50) (23.09, 22.59)

1.5 (2.24, 1.67) (8.96, 8.45) (1.69, 1.08) (7.27, 6.75) (1.62, 1.00) (4.30, 3.77)

2.0 (1.76, 1.15) (3.21, 2.66) (1.62, 1.00) (3.06, 2.51) (1.91, 1.31) (2.48, 1.91)

1.5 1.0 (1.14, 0.40) (10.90, 10.39) (1.01, 0.09) (4.38, 3.85) (1.00, 0.03) (1.26, 0.57)

1.5 (1.36, 0.70) (2.84, 2.29) (1.12, 0.37) (2.08, 1.50) (1.10, 0.33) (1.35, 0.68)

2.0 (1.42, 0.78) (1.87, 1.28) (1.24, 0.55) (1.66, 1.05) (1.34, 0.67) (1.37, 0.72)

continue to next page



1454 

2.0 1.0 (1.00, 0.01) (1.13, 0.38) (1.00, 0.00) (1.01, 0.11) (1.00, 0.00) (1.00, 0.00)

1.5 (1.05, 0.23) (1.21, 0.51) (1.00, 0.07) (1.08, 0.29) (1.00, 0.05) (1.01, 0.11)

2.0 (1.16, 0.43) (1.24, 0.54) (1.06, 0.24) (1.14, 0.40) (1.08, 0.29) (1.06, 0.24)

(–2.290, 
93.184)

(–13.845, 
69.527)

(–3.468, 
99.580)

(–16.956, 
74.737)

(–2.155, 
129.500)

(–17.485, 
84.274)

0.7156 3.0 0.0 1.0 (370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

(370.40, 
369.90)

1.5 (7.50, 6.98) (45.34, 44.84) (13.50, 12.99) (50.70, 50.20) (13.72, 13.21) (50.89, 50.39)

2.0 (1.98, 1.40) (9.89, 9.38) (3.50, 2.95) (13.14, 12.63) (5.89, 5.37) (14.08, 13.57)

0.5 1.0 (85.60, 85.10) (238.49, 
237.99)

(31.04, 30.53) (216.62, 
216.12)

(4.46, 3.93) (180.79, 
180.29)

1.5 (5.65, 5.12) (30.14, 29.63) (4.68, 4.15) (28.96, 28.46) (3.99, 3.46) (23.43, 22.92)

2.0 (2.53, 1.97) (7.72, 7.20) (2.74, 2.18) (8.41, 7.90) (3.70, 3.16) (7.52, 7.00)

1.0 1.0 (3.65, 3.11) (110.02, 
109.52)

(1.63, 1.01) (81.93, 81.43) (1.15, 0.42) (36.42, 35.92)

1.5 (2.64, 2.08) (13.87, 13.36) (1.81, 1.21) (11.15, 10.64) (1.60, 0.98) (6.15, 5.63)

2.0 (2.13, 1.55) (4.61, 4.08) (1.81, 1.21) (4.28, 3.75) (2.09, 1.51) (3.21, 2.66)

1.5 1.0 (1.09, 0.31) (17.81, 17.30) (1.00, 0.03) (6.42, 5.90) (1.00, 0.00) (1.30, 0.62)

1.5 (1.35, 0.69) (3.82, 3.28) (1.08, 0.30) (2.56, 2.00) (1.02, 0.14) (1.43, 0.78)

2.0 (1.51, 0.87) (2.32, 1.75) (1.24, 0.54) (1.96, 1.37) (1.25, 0.55) (1.48, 0.85)

2.0 1.0 (1.00, 0.00) (1.14, 0.39) (1.00, 0.00) (1.01, 0.09) (1.00, 0.00) (1.00, 0.00)

1.5 (1.02, 0.12) (1.26, 0.57) (1.00, 0.01) (1.08, 0.30) (1.00, 0.00) (1.01, 0.07)

2.0 (1.12, 0.37) (1.31, 0.64) (1.02, 0.16) (1.17, 0.44) (1.00, 0.04) (1.05, 0.23)

continue from previous page

From Tables 4 and 5, it is clear that the value of h′ 
increases as θ increases, whereas the value of g′ does not 
differ too much despite the increase in skewness. In fact, 
if we observe closely enough, it appears that h′ follows 
a superlinear growth trend in response to an increase 
in θ, i.e., h′ rises at an increasing rate as θ increases. 
For example, when (k, γ) = (0.5, 2.0) is chosen for the 
Gamma distribution, increasing the skewness from 1.0 
to 2.0 causes h′ to rise from 36.300 to 62.747 (i.e., an 
increment of 26.447), whereas increasing the skewness 
from 2.0 to 3.0 causes h′ to rise further from 62.747 to 
93.100 (i.e., an increment of 30.353) (Table 4). Figures 
1 and 2 show the movements of g′ and h′ as the degree of 
skewness increases from 0.0 through 3.0 for the Gamma 
and Lognormal distributions, respectively. From both 
figures, it is quite clear that h′ is an increasing function of 

θ. All six curves exhibit a slightly convex shape, and all 
of them have rather similar ‘slopes’. On the other hand, 
there is very little we can deduce about g′, since there is 
no particularly interesting trend based on the graphs, and 
the value of g′ relies on the choice of (k, γ). 

Referring to the out-of-control performances, it is 
found that the OSPRT chart loses part of its detection 
ability upon skewness correction. In particular, it is 
noticed that the skewness-corrected OSPRT chart 
becomes less sensitive to small and moderate process 
shifts compared to their uncorrected versions, made 
worse when the degree of skewness increases. For 
instance, when (k, γ) = (1.0, 6.0) is chosen for the 
Gamma distribution with skewness θ = 1.0 (i.e., α = 4), 
the uncorrected OSPRT chart yields (ARL1, SDRL1) = 
(3.66, 3.12) at (δ, η) = (0.5, 1.5) (Table 2), whereas the 
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skewness-corrected OSPRT chart yields (ARL1, SDRL1) 
= (7.46, 6.94) (Table 4), which is approximately two 
times greater than the original value (Tables 2 and 4). In 
fact, the deterioration in the out-of-control performances 
is very much anticipated, since the upper control limit 
of the OSPRT chart has been inflated to guarantee that 
the ARL0 value meets the recommended level. For large 
shift sizes, i.e., δ ≥ 1.5 and η ≥ 1.5, the majority of the 

(ARL1, SDRL1) values are reasonably close to one, hence 
skewness correction poses very little influence on the out-
of-control performances of the OSPRT chart. It is perhaps 
interesting to note that the OSPRT chart with combinations 
(k, γ) ∈ {(0.1, 1.5), (0.5, 2.0), (1.0, 2.5)} is very robust 
towards skewness corrections, especially when the degree 
of skewness is small. For instance, when the Gamma 
and Lognormal distributions with skewness θ = 1.0 are 

FIGURE 1. Plots of (a) h′ and (b) g′ versus θ for the OSPRT chart with (k, γ) ∈ {(0.1, 1.5), 
(0.1, 4.0), (0.5, 2.0), (0.5, 5.0), (1.0, 2.5), (1.0, 6.0)} under the Gamma distribution
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considered, the (ARL1, SDRL1) values of the skewness-
corrected OSPRT chart are very close to those of the 
unadjusted OSPRT chart for all sizes of process shifts, 
except when (δ, η) = (0.5, 1.0). This observation shows 
some important information that will help us locate the 
range of values of (k, γ) such that the performance of 
the skewness-corrected OSPRT chart can be optimised. 

Figures 3 and 4 display the contour plots of 
the ARL1 values as a function of k and γ for various 
combinations of mean and standard deviation shift 
sizes, i.e., (δ, η) ∈ {(0.5, 1.5), (0.5, 2.0), (1.0, 1.5), 
(1.0, 2.0), (2.0, 1.5), (2.0, 2.0)}, when the Gamma and 
Lognormal distributions are assumed, respectively. Here, 
we consider a rectangular domain (k, γ) ∈ [0.1, 1.0] × [1.5, 

 

 

120 

100 

80 

60 

40 

20 

0 1 2 3 

(0.1, 1.5) 
(0.1, 4.0) 
(0.5, 2.0) 
(0.5, 5.0) 
(1.0, 2.5) 
(1.0, 6.0) 

–2.5 

–5.0 

–7.5 

–10.0 

–12.5 

–15.0 

–17.5 

 

(a) 

g′ 

h′ 

(k, ) 

(0.1, 1.5) 
(0.1, 4.0) 
(0.5, 2.0) 
(0.5, 5.0) 
(1.0, 2.5) 
(1.0, 6.0) 

(k, ) 

0 1 2 3 
 

(b) 

 

 

FIGURE 2. Plots of (a) h′ and (b) g′ versus θ for the OSPRT chart with (k, γ) ∈ {(0.1, 
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6.0], which is consistent with the six combinations of (k, 
γ) chosen in Tables 1 to 5. The colour palette used in our 
contour plots is taken from a colour map that runs from 
yellow, green, olive, blue, to black, installed from an R 
package. It is worth noting that the regions coloured 
in yellow correspond to locations where the smallest 
ARL1 value lies, whereas the regions coloured in black 
correspond to locations with the largest (or undefined) 
ARL1 value. For example, referring to Figure 3(a), the 
minimum ARL1 value of the skewness-corrected OSPRT 
chart under the Gamma distribution seems to be achieved 
around k ≈ 0.6 and γ ≈ 2.0 when the shift sizes are (δ, 
η) = (0.5, 1.5). Note that we only discuss the optimum 
regions of the skewness-corrected OSPRT chart for θ = 
1.0, as the results for θ = 2.0 and 3.0 would be almost 
similar. Also, when large values of k (e.g., k = 1.0) are 
used, small values of γ (e.g., γ = 1.0) tend to distort the 
computation process of the control limits, hence resulting 
in undefined values of ARL1 (Figures 3 & 4). Therefore, 
the bottom right region of each subplot is found to be 
coloured in black, since the ARL1 values of those regions 
cannot be evaluated properly.

From both Figures 3 and 4, it is noticed that 
different combinations of shift sizes tend to have 
different regions of optimum performance. For instance, 
when (δ, η) = (0.5, 1.5), the minimum ARL1 is achieved 
somewhere within the elliptical region centred at k ≈ 
0.6 and γ ≈ 2.0 (Figures 3(a) & 4(a)). When (δ, η) = 
(1.0, 1.5), the minimum ARL1 is achieved somewhere 
within the elliptical region centred at k ≈ 0.9 and γ ≈ 
3.0 (Figures 3(c) and 4(c)). Recall that, under the usual 
Normal distribution, Teoh et al. (2023) suggested setting 
the reference parameters k and γ equal to Equations 
(2) and (3), respectively, to achieve an optimum ARL1 
performance for any deterministic shift size (δ, η). When 
(δ, η) = (0.5, 1.5), the suggested reference parameters (k, 
γ) for the Normal distribution are (0.400, 1.820), which 
is arguably close to the location explored via the contour 
plots for the Weibull and Lognormal distributions. When 
(δ, η) = (1.0, 1.5), the suggested reference parameters (k, 
γ) for the Normal distribution are (0.800, 2.900), which 
is also quite close to the optimum combination found in 
the contour plots. To this end, it seems that Equations (2) 
and (3) might be appropriate starting points for exploring 
the optimal combination (k, γ) that achieves the smallest 
ARL1 value. In future, it would be possible to develop 
a full optimisation algorithm for searching the optimal 
charting parameters (k, γ, g′, h′) that minimizes the ARL1 
value for any deterministic shift sizes (δ, η).  

AN ILLUSTRATIVE EXAMPLE

In this section, we illustrate an application of 
our proposed skewness-corrected OSPRT chart for 
monitoring the weights of radial tyres installed in 
heavy-duty trucks. A radial tyre is made up of a few 
components, i.e., tread, sidewall, belt package, carcass, 
inner liner, bead, and cap plies. These components work 
together to provide the tyre with its overall performance 
characteristics, including load-carrying capacity, 
durability, fuel efficiency, traction, and resistance to wear 
and damage. During the production of radial tyres, it is 
crucial that the tyre weights are measured and controlled 
within certain thresholds to prevent environmental 
issues (Lee et al., 2022). Past data have suggested that 
tyre weights follow a Gamma distribution with shape 
parameter α = 4 and rate parameter β = 1. As the degree 
of skewness equals one, we shall apply the skewness-
corrected OSPRT chart for the Gamma distribution with 
θ = 1.0 quoted directly from Table 4.

To demonstrate the implementation of the OSPRT 
chart, we first compute the in-control mean 𝜇𝜇0∗    𝜎𝜎0∗    √4/12  and 
standard deviation 𝜇𝜇0∗    𝜎𝜎0∗    √4/12  of the tyre weights. The in-
control mean 𝜇𝜇0∗    𝜎𝜎0∗    √4/12  is calculated as 4/1 = 4 and the standard 
deviation 𝜇𝜇0∗    𝜎𝜎0∗    √4/12  is calculated as 𝜇𝜇0∗    𝜎𝜎0∗    √4/12  = 2. Note that all 
measurements are expressed in units of 10 kilograms 
(kg), i.e., the mean is 40 kg and the standard deviation 
is 20 kg. In our illustration, we choose the OSPRT chart 
with reference parameters (k, γ) = (0.5, 2.0), and the 
skewness-corrected control limits are (g′, h′) = (–3.114, 
36.300) (Table 4). The control statistic of the skewness-
adjusted OSPRT chart is then calculated recursively using 
Equation (1).

Figure 5 shows the implementation of the skewness-
corrected OSPRT chart for monitoring simulated tyre 
weights data. Suppose that during the vulcanisation 
process, the heating temperature is incorrectly adjusted, 
leading to an increase in the mean and variability of the 
tyre weights by δ = 0.5 and η = 1.5, i.e., the mean and 
standard deviation of the tyre weights increase to 50 
kg and 30 kg, respectively. From Figure 5, it is found 
that the first six samples result in an in-control decision 
for the OSPRT chart. In the seventh sample, the control 
statistic Ci,j quickly rises above the upper control limit 
h′ after three consecutive measurements are sought. The 
control engineer is immediately notified about the shift, 
and the root cause of the issue is swiftly addressed to 
bring the process back to normal. The out-of-control run 
length measured from the start of process monitoring is 
reported as 7.
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(a) (, ) = (0.5, 1.5) (b) (, ) = (0.5, 2.0) 

(c) (, ) = (1.0, 1.5) (d) (, ) = (1.0, 2.0) 

(e) (, ) = (2.0, 1.5) (f) (, ) = (2.0, 2.0) 

FIGURE 3. Contour plots of the ARL1 values as a two-dimensional function of k and γ for (δ, η) ∈ {(a) 
(0.5, 1.5), (b) (0.5, 2.0), (c) (1.0, 1.5), (d) (1.0, 2.0), (e) (2.0, 1.5), (f) (2.0, 2.0)} when the Gamma 

distribution with θ = 1.0 is assumed

(a) (k, y) (b) (k, y)
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(c) (, ) = (1.0, 1.5) (d) (, ) = (1.0, 2.0) 

(e) (, ) = (2.0, 1.5) (f) (, ) = (2.0, 2.0) 

FIGURE 4. Contour plots of the ARL1 values as a two-dimensional function of k and γ for (δ, η) 
∈ {(a) (0.5, 1.5), (b) (0.5, 2.0), (c) (1.0, 1.5), (d) (1.0, 2.0), (e) (2.0, 1.5), (f) (2.0, 2.0)} when the 

Lognormal distribution with θ = 1.0 is assumed
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CONCLUSIONS

This paper discusses the implications of skewness on 
the performances of the OSPRT chart designed under 
the Normal model. We have chosen the Gamma and 
Lognormal distributions in our study as both distributions 
well describe the behaviours of many industrial and non-
industrial processes in the real world, such as product 
lifetimes, economic indices, and air pollution levels.

Our findings have shown that the OSPRT chart 
designed under the Normal model performs poorly 
when the underlying data have a skewed distribution. 
In particular, the ARL0 value can shrink to around 10% 
of its recommended value when the degree of skewness 
is large. This leads to excessive false alarms during 
quality applications, which may in turn destroy the 
inspectors’ confidence. As a means of reversing the 
situation, we propose a robust design for the OSPRT chart 
based on skewness correction. The method involves 
modifying the control limits of the OSPRT chart so 
that the in-control metrics (i.e., ARL0 and ASN0) can be 
brought back to the desired levels. Results show that the 
skewness-corrected OSPRT chart achieves the desired 
level of in-control performance, with an acceptable level 
of deterioration in its out-of-control performances for 
moderate and large process shift sizes. It is also found 
that the combinations (k, γ) ∈{(0.1, 1.5), (0.5, 2.0), (1.0, 
2.5)} are more robust towards high skewness compared 

FIGURE 5. The skewness-corrected OSPRT control chart for detecting a joint shift in the 
mean and variability of tyre weights

to other combinations of (k, γ). Besides, we also provide 
some insights into choosing the most appropriate 
combination of (k, γ) in response to different shift sizes 
in practice. While the insights gained can be related to 
the optimality property stated in Teoh et al. (2023), the 
full optimisation algorithms for searching the optimal (k, 
γ) specific to the Gamma and Lognormal distributions 
are still pending.

In future, researchers are highly encouraged to 
develop new optimisation algorithms for computing the 
optimal combination of (k, γ) tailored to specific skewed 
distributions. Alternatively, researchers may derive new 
charting statistics for the OSPRT chart under the Gamma 
or Lognormal distributions, but should keep in mind 
that expressions of such may be extremely convoluted, 
if not intractable. Another possible direction is through 
inventing a nonparametric OSPRT chart. Although 
nonparametric control charts possess the advantage of 
robustness towards various skewed distributions, they 
might be less powerful than parametric control charts 
for the Gamma or Lognormal distributions.
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