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ABSTRACT

Multivariate spatial functional data consists of multiple functions of time-dependent attributes observed at each spatial 
point. This study focuses on detecting spatial outliers in spatial functional data. Firstly, we develop a new method 
called Mahalanobis Distance Spatial Outlier (MDSO) to detect functional outliers in the data. The method introduces 
the multivariate functional Mahalanobis semi-distance and multivariate pairwise functional Mahalanobis semi-distance 
metrics based on the multivariate functional principal components analysis to calculate the dissimilarity between 
functions at each spatial point. Via simulation, we show that MDSO performs better than the other competing methods. 
Secondly, MDSO has been extended to detect spatial functional outliers as well. The functional outliers can now be 
categorized as global or/and local functional outliers. The appropriate number of neighbors and the cut-off point for 
the degree of isolation are determined via simulation. Finally, we demonstrate the application of the MDSO on a water 
quality data set obtained from Sungai Klang basin in Malaysia. The results can be used to support the authority in 
making better decisions on the management of the river basin or other spatial data with time-independent attributes.
Keywords: Functional Mahalanobis distance; multivariate functional data; spatial outlier; water quality

ABSTRAK

Data reruang multivariat berfungsi adalah terdiri daripada pelbagai atribut berfungsi mengikut masa yang dicerap 
bagi setiap titik reruang. Kajian ini mengutamakan pengesanan reruang terpencil dalam data reruang berfungsi. Pertama, 
kajian ini membangunkan kaedah baharu yang dikenali sebagai Jarak Mahalanobis Reruang Terpencil (JMRT) untuk 
mengesan fungsi terpencil dalam data. Kaedah ini memperkenalkan penganggar separa multivariat Mahalanobis 
berfungsi dan penganggar separa multivariat Mahalanobis berfungsi berpasangan berdasarkan analisis komponen 
utama multivariat berfungsi bagi menghitung perbezaan antara fungsi pada setiap titik reruang. Melalui simulasi, kajian 
menunjukkan bahawa prestasi JMRT lebih baik berbanding daripada kaedah lain. Kedua, kaedah JMRT dilanjutkan 
untuk mengesan reruang terpencil berfungsi. Fungsi terpencil yang sedia ada boleh dikategorikan kepada pencilan 
global dan/atau lokal berfungsi. Bilangan jiran dan titik potong bagi darjah keberasingan yang sesuai ditentukan 
melalui simulasi. Akhirnya, kami mengadaptasi aplikasi kaedah JMRT terhadap data kualiti air yang diambil dari 
lembangan Sungai Klang di Malaysia. Hasil keputusan dapat membantu pihak berwajib dalam membuat keputusan 
yang lebih baik untuk menguruskan lembangan sungai dan menguruskan data reruang yang bergantung terhadap masa. 
Kata kunci: Data multivariat berfungsi; kualiti air; penganggar Mahalanobis berfungsi; ruang terpencil

INTRODUCTION

The emergence of modern technology leads to a collection 
of large-scale data with multiple covariates stored in 
both space and time. The complex data set can also be 
transformed into a functional form and analyzed using 
spatial functional data analysis (SFDA). In SFDA, discrete-

time observations taken at a spatial point can be quantified 
in the form of a function. The function is obtained 
through a smoothing method that fits the discrete point 
observations and is treated as a unique identity at a spatial 
point (Delicado et al. 2010). The interest in evaluating and 
modelling the correlated functional data has developed 
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naturally in many applied science disciplines when the 
functions were obtained for different sites (Aristizabal, 
Giraldo & Mateu 2019). 

Multivariate functional data is an extension 
of univariate functional data. As with univariate 
functional data, multivariate functional data may also 
be contaminated by abnormal functions. These functions 
are referred to as functional outliers. This type of outlier 
is defined by Febrero, Galeano and González‐Manteiga 
(2008) as curves that do not follow the same pattern as 
the other curves, which may represent the true underlying 
distribution of the data. Several methods have been 
developed for the detection of outliers in multivariate 
functional data. These include the depth measurement-
based methods (Claeskens et al. 2014; Ieva & Paganoni 
2013; López-Pintado et al. 2014), the visualized-based 
methods using graphical tools, such as bagplot (Hubert, 
Rousseeuw & Segaert 2015), functional outlier map 
(FOM) (Rousseeuw, Raymaekers & Hubert 2018) and 
the magnitude-shape (MS) plot (Dai & Genton 2018), 
and the functional Mahalanobis distance-based method 
(Berrendero, Bueno-Larraz & Cuevas 2020) using some 
generalisation of the Mahalanobis distance in Hilbert 
space (Galeano, Joseph & Lillo 2015). However, these 
methods do not consider the spatial components of the 
data in the development of the methods. 

Spatial outliers can be distinguished into three 
types: global and/or local outliers. A global outlier can 
be defined as a spatial point having significantly different 
non-spatial attributes compared to most of the other 
points in the data set. Note that more than one global 
outlier may exist in any given data set. On the other 
hand, a local outlier is a spatial point having significantly 
different non-spatial attributes with respect to its closest 
neighbors (Haslett 1992). A global outlier might also be 
a local outlier when it has significantly different values 
of non-spatial attributes compared to its neighbors as 
well, referred to herein as a global and local outlier. The 
detection of global outliers for multivariate spatial data 
can be performed based on robust Mahalanobis distances, 
while the detection of local outliers for multivariate 
spatial data can be carried out based on the degree of 
isolation of the observation from its neighbors (Filzmoser, 
Ruiz-Gazen & Thomas-Agnan 2014). The degree of 
isolation is calculated based on pairwise Mahalanobis 
distances with its neighbors. 

With the same motivation, we aim to propose a 
new method for detecting spatial functional outliers in 
a multivariate spatial functional dataset. The structure 
of multivariate spatial functional data follows closely 

〈〈𝑓𝑓, 𝑔𝑔〉〉 ≔ ∑𝑃𝑃
𝑝𝑝=1 ∫𝐼𝐼𝑝𝑝

𝑓𝑓𝑝𝑝(𝑡𝑡𝑝𝑝)𝑔𝑔𝑝𝑝(𝑡𝑡𝑝𝑝)𝑑𝑑𝑡𝑡𝑝𝑝,    𝑓𝑓, 𝑔𝑔 ∈ 𝐻𝐻.  

 

the works of Delicado et al. (2010) and Mateu and 
Giraldo (2021). In the next section, we introduce the 
multivariate functional Mahalanobis semi-distance and 
the multivariate pairwise functional Mahalanobis semi-
distance based on the multivariate functional principal 
component analysis. Hence, we may then use the 
distances in a new method called Mahalanobis Distance 
Spatial Outlier (MDSO) to detect functional outliers in 
the data. The method can be extended to detect spatial 
functional outliers, which will be further labelled as global 
or/and local types of outliers. The full steps of the MDSO 
method are given. Next, we present the simulation results 
to identify the k nearest neighbor and the cut-off point 
for the degree of isolation. We compare the performance 
of the MDSO method to the existing functional outlier 
detection methods via a simulation study. Then, we apply 
the method to a real Malaysian water quality dataset, 
followed by discussion and conclusion.

MATERIALS AND METHODS

MULTIVARIATE FUNCTIONAL DATA

The  notations used in Happ and Greven (2018) are 
closely followed in this paper. Let the multivariate 
functional data be a vector-valued stochastic process X 
= (X1, …, XP )' with P ≥ 1 an integer. For 1 ≤ p ≤ P, let 
Ip be a compact set in R, with finite Lebesgue measure 
such that XP : Ip⟶ R  is assumed to belong L2 (Ip). We 
denote I ≔ I1 ×… × Ip, P-fold Cartesian product of Ip. Let 
X be a stochastic process indexed by t = (t1, …, tP) ∈ I 
and taking values in the P-fold Cartesian product space  
H ∶= L2(I1) ×…× L2 (IP).  Let the inner product 〈〈∙,∙〉〉:H 
× H ⟶ R,

Then, H is a Hilbert space with respect to the scalar 
product 〈〈∙,∙〉〉 (Happ & Greven 2018). Let ‖∙‖, the norm 
induced by 〈〈∙,∙〉〉.

We assume that E[X(t)] ≔ (E[X1 (t1)], …, [XP 
(tP)]) = 0, ∀t ∈ I. Let C denote the P × P matrix-valued 
covariance function which, for s, t ∈ I, is defined as C(s,t) 
≔ E[X(s) X(t)'], where the (p,q)th element of the 
matrix C(s,t), for 1 ≤  p, q ≤ P, is the covariance function 
between the pth and qth components X : Cp,q (sp, tq) ≔ 
E[Xp (sp), Xq (tq)] = Cov (Xp (sp), Xq (tq)), sp ∈ Ip, tq ∈ Iq. 
In particular, Cp,q (∙,∙) belongs to L2 (Ip × Iq). Let Γ: H ⟶ 
H denotes the covariance operator of X on the Hilbert 
space H, where for f ∈ H and t ∈ I, the qth component of 
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Γf(t) is given by (Γf)(q) (tq)≔ 〈〈C∙,q (∙,tq),f(∙)〉〉 =〈〈𝑓𝑓, 𝑔𝑔〉〉 ≔ ∑𝑃𝑃
𝑝𝑝=1 ∫𝐼𝐼𝑝𝑝

𝑓𝑓𝑝𝑝(𝑡𝑡𝑝𝑝)𝑔𝑔𝑝𝑝(𝑡𝑡𝑝𝑝)𝑑𝑑𝑡𝑡𝑝𝑝,    𝑓𝑓, 𝑔𝑔 ∈ 𝐻𝐻.  

 

 〈〈𝑓𝑓, 𝑔𝑔〉〉 ≔ ∑𝑃𝑃
𝑝𝑝=1 ∫𝐼𝐼𝑝𝑝

𝑓𝑓𝑝𝑝(𝑡𝑡𝑝𝑝)𝑔𝑔𝑝𝑝(𝑡𝑡𝑝𝑝)𝑑𝑑𝑡𝑡𝑝𝑝,    𝑓𝑓, 𝑔𝑔 ∈ 𝐻𝐻.  

 
Cp,q (sp, tq) fp (sp)dsp, tq ∈ Iq, f ∈ H.

MULTIVARIATE KARHUNEN-LOÉVE REPRESENTATION

The representation of Karhunen-Loéve for multivariate 
functional data exists as Γ has the same properties 
as the covariance operator in the univariate case, 
that is, a linear, self-adjoint and positive operator 
(Happ & Greven 2018). According to the theory of 
Hilbert-Schmidt operators, there exists a complete 
orthonormal basis of eigenfunctions {ϕj, j = 1, 2, …} ⊂ 
H and a sequence of real numbers λ1 ≥ λ2 ≥ ⋯ ≥ 0 such 
that Γϕj = λj ϕj and ϕj ⟶ 0 as  j ⟶ ∞. The λj’s are the 
eigenvalues of the covariance operator Γ and the ϕj’s are 
the associated eigenfunctions. The multivariate version 
of the Karhunen-Loéve representation is X(t) = 𝑋𝑋(𝑡𝑡) = ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗(𝑡𝑡), 𝑡𝑡 ∈  𝐼𝐼, with  ξj 
ϕj (t), t ∈ I, with zero mean random variables ξj = 〈〈X, 
ϕj〉〉 and Cov(ξj, ξl) = λj 1{j = l} (Golovkine, Klutchnikoff 
& Patilea 2021).

Let J ≥ 1 and assume that the first J eigenvalues 
are nonzero, i.e., λ1 ≥ λ2 ≥ ⋯ ≥ λJ ≥ λJ+1. Up to a sign, 
the elements of the multivariate functional principal 
component analysis basis are characterized by: 

ϕ1 = arg maxϕ 〈〈Γϕ, ϕ〉〉 such that ϕ = 1, 

ϕ2 = arg maxϕ 〈〈Γϕ, ϕ〉〉 such that ϕ = 1, and 〈〈ϕ, ϕ1〉〉 = 0,
   

    ⋮

ϕJ+1 = arg maxϕ 〈〈Γϕ, ϕ〉〉 such that ϕ = 1, and 〈〈ϕ, ϕl〉〉=0,    
∀l ≤ J. 

Details will be given in the next section. Then, the 
truncated Karhunen-Loéve expansion of the process X is

(1)

and the truncated Karhunen-Loéve expansion of the 
components of X is 

(2)

where {ϕp, j, j = 1, 2, …} is the univariate FPCA basis 
associated to the covariance operator Γp of Xp and 
the scores are ξp, j= 〈Xp, ϕp,j〉. Happ and Greven (2018) 
derived a direct relationship between the truncated 

representation given by Equation (2) of the single 
elements Xp and the truncated representation given by 
Equation (1) of the multivariate functional data X.

MULTIVARIATE FUNCTIONAL PRINCIPAL COMPONENT 
ANALYSIS (MFPCA)

We now look at the theory of the multivariate functional 
principal component analysis using the Karhunen 
Loéve representation (Happ & Greven 2018). The 
principal component elements are, in general, not 
known and have to be estimated from a sample that is 
possibly observed on different sparse grid points. These 
elements are the eigenvalues {λj}j ≥ 1, the eigenfunctions 
{ϕj}j ≥ 1 and the scores {ξj}j ≥ 1. Given a sample of n 
spatial observations X(1), …, X(n) observed at stations 
s1, …, sn, the estimation procedure for MFPCA is shown 
in Figure 1.

The estimated eigenvalues and eigenfunctions are 
derived under the assumption of a finite sample size n 
and a finite Karhunen Loéve representation for each 
univariate function Xp. They are relevant in practice with 
an appropriate choice of the truncation orders.

THE PROPOSED MULTIVARIATE FUNCTIONAL 
MAHALANOBIS SEMI-DISTANCE

The functional Mahalanobis distance between a 
functional random variable and its corresponding mean 
is studied by Galeano, Joseph and Lillo (2015). Here, 
we introduce a new definition of multivariate functional 
Mahalanobis semi-distance. The multivariate functional 
Mahalanobis semi-distance between X and mean 
function μX = E[X(t)] is denoted by 

(3)
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 (X) = 

 𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √〈〈𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋), 𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋)〉〉 ,  (3) 

 
 

where 𝛤𝛤𝐾𝐾
−1
2(𝑋𝑋) = ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋)) = ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2〈〈𝜙𝜙𝑘𝑘, 𝑋𝑋〉〉(𝜙𝜙𝑘𝑘) is a regularized 

 
 

 𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1〈〈𝑋𝑋 − 𝜇𝜇𝑋𝑋, 𝜙𝜙𝑘𝑘〉〉2 .  (4) 

 

  
 

 

 

 𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √〈〈𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋), 𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋)〉〉 ,  (3) 

 
 

where 𝛤𝛤𝐾𝐾
−1
2(𝑋𝑋) = ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋)) = ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2〈〈𝜙𝜙𝑘𝑘, 𝑋𝑋〉〉(𝜙𝜙𝑘𝑘) is a regularized 

 
 

 𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1〈〈𝑋𝑋 − 𝜇𝜇𝑋𝑋, 𝜙𝜙𝑘𝑘〉〉2 .  (4) 

 

  
 

 

 (ϕk ⊗ ϕk (X)) and the multivariate 

 𝑋𝑋⌈𝐽𝐽⌉(𝑡𝑡) = ∑𝐽𝐽
𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗(𝑡𝑡), 𝑡𝑡 ∈ 𝐼𝐼, 𝐽𝐽 ≥ 1;  (1) 

 

  
 

 𝑋𝑋𝑝𝑝⌈𝐽𝐽𝑝𝑝⌉𝑡𝑡𝑝𝑝=𝑗𝑗=1𝐽𝐽𝑝𝑝𝜉𝜉𝑝𝑝,𝑗𝑗 (2) 

 

 𝑋𝑋𝑝𝑝⌈𝐽𝐽𝑝𝑝⌉(𝑡𝑡𝑝𝑝) = ∑𝐽𝐽𝑝𝑝
𝑗𝑗=1 𝜉𝜉𝑝𝑝,𝑗𝑗 𝜙𝜙𝑝𝑝,𝑗𝑗(𝑡𝑡𝑝𝑝),      𝑡𝑡𝑝𝑝 ∈ 𝐼𝐼𝑝𝑝, 𝐽𝐽𝑝𝑝 ≥ 1        1 ≤ 𝑝𝑝 ≤ 𝑃𝑃  (2) 

 
 𝑋𝑋𝑝𝑝⌈𝐽𝐽𝑝𝑝⌉(𝑡𝑡𝑝𝑝) = ∑𝐽𝐽𝑝𝑝

𝑗𝑗=1 𝜉𝜉𝑝𝑝,𝑗𝑗 𝜙𝜙𝑝𝑝,𝑗𝑗(𝑡𝑡𝑝𝑝),      𝑡𝑡𝑝𝑝 ∈ 𝐼𝐼𝑝𝑝, 𝐽𝐽𝑝𝑝 ≥ 1        1 ≤ 𝑝𝑝 ≤ 𝑃𝑃  (2) 

 

 𝑋𝑋𝑝𝑝⌈𝐽𝐽𝑝𝑝⌉(𝑡𝑡𝑝𝑝) = ∑𝐽𝐽𝑝𝑝
𝑗𝑗=1 𝜉𝜉𝑝𝑝,𝑗𝑗 𝜙𝜙𝑝𝑝,𝑗𝑗(𝑡𝑡𝑝𝑝),      𝑡𝑡𝑝𝑝 ∈ 𝐼𝐼𝑝𝑝, 𝐽𝐽𝑝𝑝 ≥ 1        1 ≤ 𝑝𝑝 ≤ 𝑃𝑃  (2) 

 

 𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √〈〈𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋), 𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋)〉〉 ,  (3) 

 
 

where 𝛤𝛤𝐾𝐾
−1
2(𝑋𝑋) = ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋)) = ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2〈〈𝜙𝜙𝑘𝑘, 𝑋𝑋〉〉(𝜙𝜙𝑘𝑘) is a regularized 

 
 

 𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1〈〈𝑋𝑋 − 𝜇𝜇𝑋𝑋, 𝜙𝜙𝑘𝑘〉〉2 .  (4) 

 

  
 

 

 𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √〈〈𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋), 𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋)〉〉 ,  (3) 

 
 

where 𝛤𝛤𝐾𝐾
−1
2(𝑋𝑋) = ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋)) = ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2〈〈𝜙𝜙𝑘𝑘, 𝑋𝑋〉〉(𝜙𝜙𝑘𝑘) is a regularized 

 
 

 𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1〈〈𝑋𝑋 − 𝜇𝜇𝑋𝑋, 𝜙𝜙𝑘𝑘〉〉2 .  (4) 
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Karhunen Loéve representation X (t) = μX + 𝑋𝑋(𝑡𝑡) = 𝜇𝜇𝑋𝑋 + ∑∞
𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗(𝑡𝑡), 𝑡𝑡 ∈  𝐼𝐼, with ξj 

ϕ j(t), t ∈ I, with random variables ξ j = 〈〈X - μX, ϕ j〉〉 
and Cov (ξj, ξl) = λl 1{j = l}, then we can rewrite Equation 
(4) as

With the property of cross product a⊗a (c)= 〈a,c〉(a) 
and X - μX = 𝑋𝑋(𝑡𝑡) = 𝜇𝜇𝑋𝑋 + ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗(𝑡𝑡), 𝑡𝑡 ∈  𝐼𝐼, with ξj ϕ j, we  have

Since ϕk being orthonormal eigenfunctions, then, we can 
further express the formula as

Next, we extend the definition of multivariate 
functional Mahalanobis semi-distance to the pairwise 
multivariate functional Mahalanobis semi-distance. The 
pairwise multivariate functional Mahalanobis semi-
distance measures the distance between two identically 
distributed functional random variables, X(g) and X(h)

observed at sg  and sh stations, respectively where g ≠ h 
is given by  

=

FIGURE 1. Flowchart of MFPCAGiven the regularized square root inverse operator,                                                                   

𝛤𝛤𝐾𝐾
−1
2(𝑋𝑋) = ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋)) and the multivariate Karhunen Loéve representation             

𝑋𝑋(𝑡𝑡) = 𝜇𝜇𝑋𝑋 + ∑∞
𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗(𝑡𝑡), 𝑡𝑡 ∈  𝐼𝐼, with random variables 𝜉𝜉𝑗𝑗 = 〈〈𝑋𝑋 − 𝜇𝜇𝑋𝑋, 𝜙𝜙𝑗𝑗〉〉 and 

𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑗𝑗, 𝜉𝜉𝑙𝑙) = 𝜆𝜆𝑙𝑙1{𝑗𝑗=𝑙𝑙}, then we can rewrite Equation (4) as 

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √〈〈𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋), 𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋)〉〉  

 = √〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋 − 𝜇𝜇𝑋𝑋)), ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋 − 𝜇𝜇𝑋𝑋)) 〉〉  

With the property of cross product 𝑎𝑎 ⊗ 𝑎𝑎 (𝑐𝑐) =  〈𝑎𝑎, 𝑐𝑐〉(𝑎𝑎) and 𝑋𝑋 − 𝜇𝜇𝑋𝑋 = ∑∞
𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗,  we  

have 
        𝑑𝑑𝑀𝑀

𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋)  =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2〈〈𝜙𝜙𝑘𝑘, ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), ∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2〈〈𝜙𝜙𝑘𝑘, ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉  

                               =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2 ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), ∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2 ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉  

                               = √∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1〈〈∑∞
𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉.  

Since 𝜙𝜙𝑘𝑘 being orthonormal eigenfunctions, then, we can further express the formula as 

          𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1 ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗
2〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉2  

                                = √∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1𝜉𝜉𝑘𝑘 
2  

                             = √∑𝐾𝐾
𝑘𝑘=1

1
𝜆𝜆𝑘𝑘

〈〈𝑋𝑋 − 𝜇𝜇𝑋𝑋, 𝜙𝜙𝑘𝑘〉〉2.    
                                                                

 

Given the regularized square root inverse operator,                                                                   

𝛤𝛤𝐾𝐾
−1
2(𝑋𝑋) = ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋)) and the multivariate Karhunen Loéve representation             

𝑋𝑋(𝑡𝑡) = 𝜇𝜇𝑋𝑋 + ∑∞
𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗(𝑡𝑡), 𝑡𝑡 ∈  𝐼𝐼, with random variables 𝜉𝜉𝑗𝑗 = 〈〈𝑋𝑋 − 𝜇𝜇𝑋𝑋, 𝜙𝜙𝑗𝑗〉〉 and 

𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑗𝑗, 𝜉𝜉𝑙𝑙) = 𝜆𝜆𝑙𝑙1{𝑗𝑗=𝑙𝑙}, then we can rewrite Equation (4) as 

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √〈〈𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋), 𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋)〉〉  

 = √〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋 − 𝜇𝜇𝑋𝑋)), ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋 − 𝜇𝜇𝑋𝑋)) 〉〉  

With the property of cross product 𝑎𝑎 ⊗ 𝑎𝑎 (𝑐𝑐) =  〈𝑎𝑎, 𝑐𝑐〉(𝑎𝑎) and 𝑋𝑋 − 𝜇𝜇𝑋𝑋 = ∑∞
𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗,  we  

have 
        𝑑𝑑𝑀𝑀

𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋)  =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2〈〈𝜙𝜙𝑘𝑘, ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), ∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2〈〈𝜙𝜙𝑘𝑘, ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉  

                               =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2 ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), ∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2 ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉  

                               = √∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1〈〈∑∞
𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉.  

Since 𝜙𝜙𝑘𝑘 being orthonormal eigenfunctions, then, we can further express the formula as 

          𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1 ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗
2〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉2  

                                = √∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1𝜉𝜉𝑘𝑘 
2  

                             = √∑𝐾𝐾
𝑘𝑘=1

1
𝜆𝜆𝑘𝑘

〈〈𝑋𝑋 − 𝜇𝜇𝑋𝑋, 𝜙𝜙𝑘𝑘〉〉2.    
                                                                

 

Given the regularized square root inverse operator,                                                                   

𝛤𝛤𝐾𝐾
−1
2(𝑋𝑋) = ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋)) and the multivariate Karhunen Loéve representation             

𝑋𝑋(𝑡𝑡) = 𝜇𝜇𝑋𝑋 + ∑∞
𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗(𝑡𝑡), 𝑡𝑡 ∈  𝐼𝐼, with random variables 𝜉𝜉𝑗𝑗 = 〈〈𝑋𝑋 − 𝜇𝜇𝑋𝑋, 𝜙𝜙𝑗𝑗〉〉 and 

𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑗𝑗, 𝜉𝜉𝑙𝑙) = 𝜆𝜆𝑙𝑙1{𝑗𝑗=𝑙𝑙}, then we can rewrite Equation (4) as 

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √〈〈𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋), 𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋)〉〉  

 = √〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋 − 𝜇𝜇𝑋𝑋)), ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋 − 𝜇𝜇𝑋𝑋)) 〉〉  

With the property of cross product 𝑎𝑎 ⊗ 𝑎𝑎 (𝑐𝑐) =  〈𝑎𝑎, 𝑐𝑐〉(𝑎𝑎) and 𝑋𝑋 − 𝜇𝜇𝑋𝑋 = ∑∞
𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗,  we  

have 
        𝑑𝑑𝑀𝑀

𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋)  =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2〈〈𝜙𝜙𝑘𝑘, ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), ∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2〈〈𝜙𝜙𝑘𝑘, ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉  

                               =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2 ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), ∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2 ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉  

                               = √∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1〈〈∑∞
𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉.  

Since 𝜙𝜙𝑘𝑘 being orthonormal eigenfunctions, then, we can further express the formula as 

          𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1 ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗
2〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉2  

                                = √∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1𝜉𝜉𝑘𝑘 
2  

                             = √∑𝐾𝐾
𝑘𝑘=1

1
𝜆𝜆𝑘𝑘

〈〈𝑋𝑋 − 𝜇𝜇𝑋𝑋, 𝜙𝜙𝑘𝑘〉〉2.    
                                                                

 

Given the regularized square root inverse operator,                                                                   

𝛤𝛤𝐾𝐾
−1
2(𝑋𝑋) = ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋)) and the multivariate Karhunen Loéve representation             

𝑋𝑋(𝑡𝑡) = 𝜇𝜇𝑋𝑋 + ∑∞
𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗(𝑡𝑡), 𝑡𝑡 ∈  𝐼𝐼, with random variables 𝜉𝜉𝑗𝑗 = 〈〈𝑋𝑋 − 𝜇𝜇𝑋𝑋, 𝜙𝜙𝑗𝑗〉〉 and 

𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑗𝑗, 𝜉𝜉𝑙𝑙) = 𝜆𝜆𝑙𝑙1{𝑗𝑗=𝑙𝑙}, then we can rewrite Equation (4) as 

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √〈〈𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋), 𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋)〉〉  

 = √〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋 − 𝜇𝜇𝑋𝑋)), ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋 − 𝜇𝜇𝑋𝑋)) 〉〉  

With the property of cross product 𝑎𝑎 ⊗ 𝑎𝑎 (𝑐𝑐) =  〈𝑎𝑎, 𝑐𝑐〉(𝑎𝑎) and 𝑋𝑋 − 𝜇𝜇𝑋𝑋 = ∑∞
𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗,  we  

have 
        𝑑𝑑𝑀𝑀

𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋)  =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2〈〈𝜙𝜙𝑘𝑘, ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), ∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2〈〈𝜙𝜙𝑘𝑘, ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉  

                               =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2 ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), ∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2 ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉  

                               = √∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1〈〈∑∞
𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉.  

Since 𝜙𝜙𝑘𝑘 being orthonormal eigenfunctions, then, we can further express the formula as 

          𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1 ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗
2〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉2  

                                = √∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1𝜉𝜉𝑘𝑘 
2  

                             = √∑𝐾𝐾
𝑘𝑘=1

1
𝜆𝜆𝑘𝑘

〈〈𝑋𝑋 − 𝜇𝜇𝑋𝑋, 𝜙𝜙𝑘𝑘〉〉2.    
                                                                

 

Given the regularized square root inverse operator,                                                                   

𝛤𝛤𝐾𝐾
−1
2(𝑋𝑋) = ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋)) and the multivariate Karhunen Loéve representation             

𝑋𝑋(𝑡𝑡) = 𝜇𝜇𝑋𝑋 + ∑∞
𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗(𝑡𝑡), 𝑡𝑡 ∈  𝐼𝐼, with random variables 𝜉𝜉𝑗𝑗 = 〈〈𝑋𝑋 − 𝜇𝜇𝑋𝑋, 𝜙𝜙𝑗𝑗〉〉 and 

𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑗𝑗, 𝜉𝜉𝑙𝑙) = 𝜆𝜆𝑙𝑙1{𝑗𝑗=𝑙𝑙}, then we can rewrite Equation (4) as 

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √〈〈𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋), 𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋)〉〉  

 = √〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋 − 𝜇𝜇𝑋𝑋)), ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋 − 𝜇𝜇𝑋𝑋)) 〉〉  

With the property of cross product 𝑎𝑎 ⊗ 𝑎𝑎 (𝑐𝑐) =  〈𝑎𝑎, 𝑐𝑐〉(𝑎𝑎) and 𝑋𝑋 − 𝜇𝜇𝑋𝑋 = ∑∞
𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗,  we  

have 
        𝑑𝑑𝑀𝑀

𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋)  =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2〈〈𝜙𝜙𝑘𝑘, ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), ∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2〈〈𝜙𝜙𝑘𝑘, ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉  

                               =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2 ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), ∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2 ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉  

                               = √∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1〈〈∑∞
𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉.  

Since 𝜙𝜙𝑘𝑘 being orthonormal eigenfunctions, then, we can further express the formula as 

          𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1 ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗
2〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉2  

                                = √∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1𝜉𝜉𝑘𝑘 
2  

                             = √∑𝐾𝐾
𝑘𝑘=1

1
𝜆𝜆𝑘𝑘

〈〈𝑋𝑋 − 𝜇𝜇𝑋𝑋, 𝜙𝜙𝑘𝑘〉〉2.    
                                                                

 

Given the regularized square root inverse operator,                                                                   

𝛤𝛤𝐾𝐾
−1
2(𝑋𝑋) = ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋)) and the multivariate Karhunen Loéve representation             

𝑋𝑋(𝑡𝑡) = 𝜇𝜇𝑋𝑋 + ∑∞
𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗(𝑡𝑡), 𝑡𝑡 ∈  𝐼𝐼, with random variables 𝜉𝜉𝑗𝑗 = 〈〈𝑋𝑋 − 𝜇𝜇𝑋𝑋, 𝜙𝜙𝑗𝑗〉〉 and 

𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑗𝑗, 𝜉𝜉𝑙𝑙) = 𝜆𝜆𝑙𝑙1{𝑗𝑗=𝑙𝑙}, then we can rewrite Equation (4) as 

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √〈〈𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋), 𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋)〉〉  

 = √〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋 − 𝜇𝜇𝑋𝑋)), ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋 − 𝜇𝜇𝑋𝑋)) 〉〉  

With the property of cross product 𝑎𝑎 ⊗ 𝑎𝑎 (𝑐𝑐) =  〈𝑎𝑎, 𝑐𝑐〉(𝑎𝑎) and 𝑋𝑋 − 𝜇𝜇𝑋𝑋 = ∑∞
𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗,  we  

have 
        𝑑𝑑𝑀𝑀

𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋)  =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2〈〈𝜙𝜙𝑘𝑘, ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), ∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2〈〈𝜙𝜙𝑘𝑘, ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉  

                               =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2 ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), ∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2 ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉  

                               = √∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1〈〈∑∞
𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉.  

Since 𝜙𝜙𝑘𝑘 being orthonormal eigenfunctions, then, we can further express the formula as 

          𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1 ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗
2〈〈𝜙𝜙𝑘𝑘, 𝜙𝜙𝑗𝑗〉〉2  

                                = √∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1𝜉𝜉𝑘𝑘 
2  

                             = √∑𝐾𝐾
𝑘𝑘=1

1
𝜆𝜆𝑘𝑘

〈〈𝑋𝑋 − 𝜇𝜇𝑋𝑋, 𝜙𝜙𝑘𝑘〉〉2.    
                                                                

 

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋(𝑔𝑔), 𝑋𝑋(ℎ)) = √〈〈𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)), 𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ))〉〉  

                      =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ))), ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1

2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)))〉〉.  

With the property of cross product 𝑎𝑎 ⊗ 𝑎𝑎 (𝑐𝑐) =  〈𝑎𝑎, 𝑐𝑐〉(𝑎𝑎) and                                                                  

𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ) = ∑∞
𝑗𝑗=1 (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑗𝑗, we have 

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋(𝑔𝑔), 𝑋𝑋(ℎ)) =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2〈〈𝜙𝜙𝑘𝑘, 𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)〉〉(𝜙𝜙𝑘𝑘), ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2〈〈𝜙𝜙𝑘𝑘, 𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)〉〉(𝜙𝜙𝑘𝑘)〉〉                    =

 √∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1〈〈 〈〈𝜙𝜙𝑘𝑘, ∑∞
𝑗𝑗=1 (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), 〈〈𝜙𝜙𝑘𝑘, ∑∞

𝑗𝑗=1 (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉 

Since 𝜙𝜙𝑘𝑘 being orthonormal eigenfunctions, we can show that  

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋(𝑔𝑔), 𝑋𝑋(ℎ)) = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1〈〈(𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑘𝑘, (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑘𝑘〉〉  

                              = √∑𝐾𝐾
𝑘𝑘=1

1
𝜆𝜆𝑘𝑘

(𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)2  .                                                                             

 

 

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋(𝑔𝑔), 𝑋𝑋(ℎ)) = √〈〈𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)), 𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ))〉〉  

                      =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ))), ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1

2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)))〉〉.  

With the property of cross product 𝑎𝑎 ⊗ 𝑎𝑎 (𝑐𝑐) =  〈𝑎𝑎, 𝑐𝑐〉(𝑎𝑎) and                                                                  

𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ) = ∑∞
𝑗𝑗=1 (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑗𝑗, we have 

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋(𝑔𝑔), 𝑋𝑋(ℎ)) =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2〈〈𝜙𝜙𝑘𝑘, 𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)〉〉(𝜙𝜙𝑘𝑘), ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2〈〈𝜙𝜙𝑘𝑘, 𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)〉〉(𝜙𝜙𝑘𝑘)〉〉                    =

 √∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1〈〈 〈〈𝜙𝜙𝑘𝑘, ∑∞
𝑗𝑗=1 (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), 〈〈𝜙𝜙𝑘𝑘, ∑∞

𝑗𝑗=1 (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉 

Since 𝜙𝜙𝑘𝑘 being orthonormal eigenfunctions, we can show that  

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋(𝑔𝑔), 𝑋𝑋(ℎ)) = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1〈〈(𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑘𝑘, (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑘𝑘〉〉  

                              = √∑𝐾𝐾
𝑘𝑘=1

1
𝜆𝜆𝑘𝑘

(𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)2  .                                                                             
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With the property of cross product a ⊗ a (c) = 〈a,c〉(a) 
and X(g)) - X(h)) = 𝑋𝑋(𝑡𝑡) = 𝜇𝜇𝑋𝑋 + ∑∞

𝑗𝑗=1 𝜉𝜉𝑗𝑗 𝜙𝜙𝑗𝑗(𝑡𝑡), 𝑡𝑡 ∈  𝐼𝐼, with (ξgk - ξhk) ϕj, we have

Since ϕk being orthonormal eigenfunctions, we can show 
that 

Thus, the pairwise multivariate functional 
Mahalanobis semi-distance can be written in the form 
of standardized multivariate functional principal 
component scores of X(g) and X(h) as

(5)

where ξ i,k = 〈〈X(i) - μX, ϕk 〉〉,  for i = 1, …, n.

Following Berrendero, Bueno-Larraz and Cuevas (2020) 
and Galeano, Joseph and Lillo (2015), the distribution 
of the squared functional Mahalanobis distance, 𝑑𝑑𝑀𝑀𝐾𝐾

2 (X, 
μX) for a Gaussian process X follows chi-square with K 
degrees of freedom, 𝜒𝜒𝐾𝐾2  .

Proposition 1  Let X(1),…, X(n) be multivariate functional 
centred random variables on a set of locations 
s1,…, sn in a spatial domain D ⊂ R2, and the scores 
�̂�𝜉𝑖𝑖 = (𝜉𝜉𝑖𝑖,1, … , 𝜉𝜉𝑖𝑖,𝐾𝐾)

′
  be independent and identically 

variables in K dimension following Gaussian vector. 
Then, the conditional distribution of the pairwise squared 
multivariate functional Mahalanobis semi-distance  𝑑𝑑𝑀𝑀𝐾𝐾

2 
(X(g)), X(h)), g, h ∈ {1, 2, …, n} given X(g) given  follows 
a non-central chi-square distribution with K degrees 
of freedom and the non-centrality parameter 𝑑𝑑𝑀𝑀𝐾𝐾

2 (X(g), 
μX), the squared functional Mahalanobis semi-distance. 

Proof  
Consider the pairwise squared multivariate functional 
Mahalanobis semi-distance  𝑑𝑑𝑀𝑀𝐾𝐾

2 (X(g)), X(h)) when X(g) = x 
with x = (x1, …, xp)'∈ R p in the infinite dimensional space 
L2 (Ip) and let ) and let 𝑦𝑦 = ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1〈〈𝑥𝑥 − 𝜇𝜇𝑥𝑥, 𝜙𝜙𝑘𝑘〉〉 truncated) and let 𝑦𝑦 = ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1〈〈𝑥𝑥 − 𝜇𝜇𝑥𝑥, 𝜙𝜙𝑘𝑘〉〉 truncated truncated on 

K ϵ N, λk is the eigenvalue and ϕk  is the eigenfunction 
of covariance operator ΓK. Then the pairwise squared 
functional Mahalanobis distance, 

where ξk, x is the scores of x and 

 𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √〈〈𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋), 𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋 − 𝜇𝜇𝑋𝑋)〉〉 ,  (3) 

 
 

where 𝛤𝛤𝐾𝐾
−1
2(𝑋𝑋) = ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋)) = ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2〈〈𝜙𝜙𝑘𝑘, 𝑋𝑋〉〉(𝜙𝜙𝑘𝑘) is a regularized 

 
 

 𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋, 𝜇𝜇𝑋𝑋) = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1〈〈𝑋𝑋 − 𝜇𝜇𝑋𝑋, 𝜙𝜙𝑘𝑘〉〉2 .  (4) 

 

  
 

 

(ξk,g - ξk,x) are 
independent random variables with mean 0 and variance 
1. Thus, 𝑑𝑑𝑀𝑀𝐾𝐾

2 (X(g), x)follow a non-central chi-square 
distribution with K degrees of freedom and non-
centrality parameter 𝑑𝑑𝑀𝑀𝐾𝐾

2 (X(g), μX).                                            
We note that the formulation of Equations (4) and (5) 
reduces to the Mahalanobis distance formulation on the 
selected MFPCA scores.

THE PROPOSED MDSO METHOD 

This subsection proposes a spatial functional outlier 
detection method using the distance defined in the previous 
section. Consider a multivariate spatial functional data 
consists of p number of non-spatial attributes that are 
observed on n spatial observations such that X(1), …, 
X(n) at stations s1, …, sn, respectively. We first applying 
an MFPCA to the multivariate functional data. We then 
use the functional principal scores to detect global and/
or local functional outliers. The method for detecting 
global functional outliers is based on the multivariate 
functional Mahalanobis distance given by Equation 
(4), where λK are the eigenvalues or the measure of the 
variation of K principal components and the scores �̂�𝜉𝑖𝑖  
= ( �̂�𝜉𝑖𝑖 i,1, …, �̂�𝜉𝑖𝑖 i,K)' be independent variables. The global 
functional outliers are determined when the values of the 
functional Mahalanobis distance given by Equation (4) 
are larger than the cut-off value. Here the cut-off value 
is the square root of 97.5% quantile of the chi-square 
distribution with K degrees of freedom √𝜒𝜒𝐾𝐾;0.9752 . . 

As for the detection of local functional outliers, 

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋(𝑔𝑔), 𝑋𝑋(ℎ)) = √〈〈𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)), 𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ))〉〉  

                      =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ))), ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1

2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)))〉〉.  

With the property of cross product 𝑎𝑎 ⊗ 𝑎𝑎 (𝑐𝑐) =  〈𝑎𝑎, 𝑐𝑐〉(𝑎𝑎) and                                                                  

𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ) = ∑∞
𝑗𝑗=1 (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑗𝑗, we have 

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋(𝑔𝑔), 𝑋𝑋(ℎ)) =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2〈〈𝜙𝜙𝑘𝑘, 𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)〉〉(𝜙𝜙𝑘𝑘), ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2〈〈𝜙𝜙𝑘𝑘, 𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)〉〉(𝜙𝜙𝑘𝑘)〉〉                    =

 √∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1〈〈 〈〈𝜙𝜙𝑘𝑘, ∑∞
𝑗𝑗=1 (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), 〈〈𝜙𝜙𝑘𝑘, ∑∞

𝑗𝑗=1 (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉 

Since 𝜙𝜙𝑘𝑘 being orthonormal eigenfunctions, we can show that  

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋(𝑔𝑔), 𝑋𝑋(ℎ)) = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1〈〈(𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑘𝑘, (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑘𝑘〉〉  

                              = √∑𝐾𝐾
𝑘𝑘=1

1
𝜆𝜆𝑘𝑘

(𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)2  .                                                                             

 

 

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋(𝑔𝑔), 𝑋𝑋(ℎ)) = √〈〈𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)), 𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ))〉〉  

                      =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ))), ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1

2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)))〉〉.  

With the property of cross product 𝑎𝑎 ⊗ 𝑎𝑎 (𝑐𝑐) =  〈𝑎𝑎, 𝑐𝑐〉(𝑎𝑎) and                                                                  

𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ) = ∑∞
𝑗𝑗=1 (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑗𝑗, we have 

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋(𝑔𝑔), 𝑋𝑋(ℎ)) =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2〈〈𝜙𝜙𝑘𝑘, 𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)〉〉(𝜙𝜙𝑘𝑘), ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2〈〈𝜙𝜙𝑘𝑘, 𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)〉〉(𝜙𝜙𝑘𝑘)〉〉                    =

 √∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1〈〈 〈〈𝜙𝜙𝑘𝑘, ∑∞
𝑗𝑗=1 (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), 〈〈𝜙𝜙𝑘𝑘, ∑∞

𝑗𝑗=1 (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉 

Since 𝜙𝜙𝑘𝑘 being orthonormal eigenfunctions, we can show that  

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋(𝑔𝑔), 𝑋𝑋(ℎ)) = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1〈〈(𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑘𝑘, (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑘𝑘〉〉  

                              = √∑𝐾𝐾
𝑘𝑘=1

1
𝜆𝜆𝑘𝑘

(𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)2  .                                                                             

 

 

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋(𝑔𝑔), 𝑋𝑋(ℎ)) = √〈〈𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)), 𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ))〉〉  

                      =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ))), ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1

2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)))〉〉.  

With the property of cross product 𝑎𝑎 ⊗ 𝑎𝑎 (𝑐𝑐) =  〈𝑎𝑎, 𝑐𝑐〉(𝑎𝑎) and                                                                  

𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ) = ∑∞
𝑗𝑗=1 (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑗𝑗, we have 

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋(𝑔𝑔), 𝑋𝑋(ℎ)) =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2〈〈𝜙𝜙𝑘𝑘, 𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)〉〉(𝜙𝜙𝑘𝑘), ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2〈〈𝜙𝜙𝑘𝑘, 𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)〉〉(𝜙𝜙𝑘𝑘)〉〉                    =

 √∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1〈〈 〈〈𝜙𝜙𝑘𝑘, ∑∞
𝑗𝑗=1 (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), 〈〈𝜙𝜙𝑘𝑘, ∑∞

𝑗𝑗=1 (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉 

Since 𝜙𝜙𝑘𝑘 being orthonormal eigenfunctions, we can show that  

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋(𝑔𝑔), 𝑋𝑋(ℎ)) = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1〈〈(𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑘𝑘, (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑘𝑘〉〉  

                              = √∑𝐾𝐾
𝑘𝑘=1

1
𝜆𝜆𝑘𝑘

(𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)2  .                                                                             

 

 

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋(𝑔𝑔), 𝑋𝑋(ℎ)) = √〈〈𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)), 𝛤𝛤𝐾𝐾

−1
2(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ))〉〉  

                      =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ))), ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1

2(𝜙𝜙𝑘𝑘 ⊗ 𝜙𝜙𝑘𝑘(𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)))〉〉.  

With the property of cross product 𝑎𝑎 ⊗ 𝑎𝑎 (𝑐𝑐) =  〈𝑎𝑎, 𝑐𝑐〉(𝑎𝑎) and                                                                  

𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ) = ∑∞
𝑗𝑗=1 (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑗𝑗, we have 

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋(𝑔𝑔), 𝑋𝑋(ℎ)) =

√〈〈∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1
2〈〈𝜙𝜙𝑘𝑘, 𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)〉〉(𝜙𝜙𝑘𝑘), ∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1
2〈〈𝜙𝜙𝑘𝑘, 𝑋𝑋(𝑔𝑔) − 𝑋𝑋(ℎ)〉〉(𝜙𝜙𝑘𝑘)〉〉                    =

 √∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1〈〈 〈〈𝜙𝜙𝑘𝑘, ∑∞
𝑗𝑗=1 (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘), 〈〈𝜙𝜙𝑘𝑘, ∑∞

𝑗𝑗=1 (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑗𝑗〉〉(𝜙𝜙𝑘𝑘)〉〉 

Since 𝜙𝜙𝑘𝑘 being orthonormal eigenfunctions, we can show that  

𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋(𝑔𝑔), 𝑋𝑋(ℎ)) = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1〈〈(𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑘𝑘, (𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)𝜙𝜙𝑘𝑘〉〉  

                              = √∑𝐾𝐾
𝑘𝑘=1

1
𝜆𝜆𝑘𝑘

(𝜉𝜉𝑔𝑔𝑘𝑘 − 𝜉𝜉ℎ𝑘𝑘)2  .                                                                             

 

 

 𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋(𝑔𝑔), 𝑋𝑋(ℎ)) = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1(𝜉𝜉𝑔𝑔,𝑘𝑘 − 𝜉𝜉ℎ,𝑘𝑘)2 ,  (5) 

where  𝜉𝜉𝑖𝑖,𝑘𝑘 = 〈〈𝑋𝑋(𝑖𝑖) − 𝜇𝜇𝑋𝑋, 𝜙𝜙𝑘𝑘〉〉,      for 𝑖𝑖 = 1, … , 𝑛𝑛. 

= ∑𝑃𝑃
𝑝𝑝=1 ∫ (𝑋𝑋𝑖𝑖,𝑝𝑝(𝑡𝑡𝑝𝑝)−𝜇𝜇𝑋𝑋𝑖𝑖,𝑝𝑝), 𝜙𝜙𝑘𝑘,𝑝𝑝(𝑡𝑡𝑝𝑝) 𝑑𝑑𝑡𝑡𝑝𝑝  

= ∑𝑃𝑃
𝑝𝑝=1 ∫𝐼𝐼𝑝𝑝

(𝑋𝑋𝑖𝑖,𝑝𝑝(𝑡𝑡𝑝𝑝)−𝜇𝜇𝑋𝑋𝑖𝑖,𝑝𝑝) 𝜙𝜙𝑘𝑘,𝑝𝑝(𝑡𝑡𝑝𝑝) 𝑑𝑑𝑡𝑡𝑝𝑝    

 

 𝑑𝑑𝑀𝑀
𝐾𝐾  (𝑋𝑋(𝑔𝑔), 𝑋𝑋(ℎ)) = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1(𝜉𝜉𝑔𝑔,𝑘𝑘 − 𝜉𝜉ℎ,𝑘𝑘)2 ,  (5) 

where  𝜉𝜉𝑖𝑖,𝑘𝑘 = 〈〈𝑋𝑋(𝑖𝑖) − 𝜇𝜇𝑋𝑋, 𝜙𝜙𝑘𝑘〉〉,      for 𝑖𝑖 = 1, … , 𝑛𝑛. 

= ∑𝑃𝑃
𝑝𝑝=1 ∫ (𝑋𝑋𝑖𝑖,𝑝𝑝(𝑡𝑡𝑝𝑝)−𝜇𝜇𝑋𝑋𝑖𝑖,𝑝𝑝), 𝜙𝜙𝑘𝑘,𝑝𝑝(𝑡𝑡𝑝𝑝) 𝑑𝑑𝑡𝑡𝑝𝑝  

= ∑𝑃𝑃
𝑝𝑝=1 ∫𝐼𝐼𝑝𝑝

(𝑋𝑋𝑖𝑖,𝑝𝑝(𝑡𝑡𝑝𝑝)−𝜇𝜇𝑋𝑋𝑖𝑖,𝑝𝑝) 𝜙𝜙𝑘𝑘,𝑝𝑝(𝑡𝑡𝑝𝑝) 𝑑𝑑𝑡𝑡𝑝𝑝    

 

Mahalanobis distance,  

    𝑑𝑑𝐹𝐹𝐹𝐹
𝐾𝐾 2(𝑋𝑋(𝑔𝑔), 𝑥𝑥) = ∑𝐾𝐾

𝑘𝑘=1
1

𝜆𝜆𝑘𝑘
 〈〈𝑋𝑋(𝑔𝑔) − 𝑥𝑥, 𝜙𝜙𝑘𝑘〉〉2  

                               = ∑𝐾𝐾
𝑘𝑘=1

1
𝜆𝜆𝑘𝑘

 (∫𝐼𝐼𝑝𝑝
(𝑋𝑋𝑔𝑔(𝑡𝑡)−𝑥𝑥(𝑡𝑡))𝜙𝜙𝑘𝑘(𝑡𝑡) 𝑑𝑑𝑡𝑡))

2
   

  = ∑𝐾𝐾
𝑘𝑘=1

1
𝜆𝜆𝑘𝑘

 (∑∞
𝑗𝑗=1 (𝜉𝜉𝑗𝑗,𝑔𝑔 − 𝜉𝜉𝑗𝑗,𝑥𝑥)〈𝜙𝜙𝑗𝑗, 𝜙𝜙𝑘𝑘〉)2   

 = ∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1(𝜉𝜉𝑘𝑘,𝑔𝑔 − 𝜉𝜉𝑘𝑘,𝑥𝑥)2,  

where 𝜉𝜉𝑘𝑘,𝑥𝑥 is the scores of 𝑥𝑥 and 𝜆𝜆𝑘𝑘
−1

2(𝜉𝜉𝑘𝑘,𝑔𝑔 − 𝜉𝜉𝑘𝑘,𝑥𝑥) are independent random variables with mean 
0 and variance 1. Thus, 𝑑𝑑𝐹𝐹

𝐾𝐾 2(𝑋𝑋(𝑔𝑔), 𝑥𝑥) follow a non-central chi-square distribution with  𝐾𝐾 
degrees of freedom and non-centrality parameter 𝑑𝑑𝐹𝐹

𝐾𝐾 2(𝑋𝑋(𝑔𝑔), 𝜇𝜇𝑋𝑋).     

     = ∑𝐾𝐾
𝑘𝑘=1

1
𝜆𝜆𝑘𝑘

 (∫𝐼𝐼𝑝𝑝
(𝑋𝑋𝑔𝑔(𝑡𝑡)−𝑥𝑥(𝑡𝑡))𝜙𝜙𝑘𝑘(𝑡𝑡) 𝑑𝑑𝑡𝑡))

2
   

  = ∑𝐾𝐾
𝑘𝑘=1

1
𝜆𝜆𝑘𝑘

 (∑∞
𝑗𝑗=1 (𝜉𝜉𝑗𝑗,𝑔𝑔 − 𝜉𝜉𝑗𝑗,𝑥𝑥)〈〈𝜙𝜙𝑗𝑗, 𝜙𝜙𝑘𝑘〉〉)2   

 = ∑𝐾𝐾
𝑘𝑘=1 𝜆𝜆𝑘𝑘

−1(𝜉𝜉𝑘𝑘,𝑔𝑔 − 𝜉𝜉𝑘𝑘,𝑥𝑥)2,  
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firstly, the Euclidean distances between station 
coordinates are calculated to determine the k nearest 
neighbors. Then, the pairwise multivariate functional 
Mahalanobis semi-distance between a station and each 
of the k nearest neighbors are calculated using Equation 
5. The distances are then sorted in ascending order. 
According to Filzmoser, Ruiz-Gazen and Thomas-Agnan 
(2014), the degree of isolation of a station implies that 
the attributes at the station are very different from most 
of its neighbors. If only the next nearest neighbor is 
considered, then it would be bias because just by chance 
the next nearest neighbor’s attributes could be close but 
a third neighbor might be far away. Thus, β is denoted 
as a fraction and ⌈k∙β⌉ is the number of neighbors of a 
station that can be similar to the station. Therefore, X(⌈k∙β⌉) 
can be understood as the functional observations of the 
next nearest neighbor with index⌈k∙β⌉. Then, the degree 
of isolation of a station, α(i)-quantile is computed by

(6)

The pairwise squared multivariate functional Mahalanobis 
semi-distance on the right-hand side in Equation (6) is 
a non-central chi-square distribution with K degrees of 
freedom. The non-centrality parameter of the squared 
multivariate functional Mahalanobis semi-distance 
is represented on the left-hand side of the equation. 
The cut-off point is determined by β-value. If α(i) is 
significantly larger than β, then station i considered as a 
local functional outlier. 

The proposed algorithm of the detection of spatial 
functional outliers is presented as follows. Given a 
multivariate functional data with known spatial location, 

Step 1.   Set a number of k nearest neighbors and a fraction 
of neighbors, β.
Step 2.  Perform MFPCA on data to obtain the eigenvalues 
and functional principal scores for each station.

Step 3.  Compute  Compute 𝑑𝑑𝑀𝑀
𝐾𝐾 (𝑋𝑋, 𝜇𝜇𝑋𝑋)  = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1𝜉𝜉𝑘𝑘 

2. If 𝑑𝑑𝑀𝑀
𝐾𝐾 ≥ √𝜒𝜒𝐾𝐾;0.975 

2 , then station 𝑖𝑖 is a  If  Compute 𝑑𝑑𝑀𝑀
𝐾𝐾 (𝑋𝑋, 𝜇𝜇𝑋𝑋)  = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1𝜉𝜉𝑘𝑘 

2. If 𝑑𝑑𝑀𝑀
𝐾𝐾 ≥ √𝜒𝜒𝐾𝐾;0.975 

2 , then station 𝑖𝑖 is a  

then Compute 𝑑𝑑𝑀𝑀
𝐾𝐾 (𝑋𝑋, 𝜇𝜇𝑋𝑋)  = √∑𝐾𝐾

𝑘𝑘=1 𝜆𝜆𝑘𝑘
−1𝜉𝜉𝑘𝑘 

2. If 𝑑𝑑𝑀𝑀
𝐾𝐾 ≥ √𝜒𝜒𝐾𝐾;0.975 

2 , then station 𝑖𝑖 is a  station i is a global functional outlier.

Step 4.  Calculate the Euclidean distance between station 
coordinates and considers only k nearest neighbors.
Step 5.  Compute the pairwise multivariate functional 
Mahalanobis semi-distance between the station and 
each of the neighbors. Sort the distances in ascending 
order.

Step 6.  Calculate the next nearest neighbor index ⌈k∙β⌉ 
and determine the pairwise multivariate functional 
Mahalanobis semi-distance. 
Step 7.  Then, compute the degree of isolation for each spatial 
point by using Step 1. 𝜒𝜒𝐾𝐾;𝛼𝛼(𝑖𝑖)

2 (𝑑𝑑𝑀𝑀
𝐾𝐾 2(𝑋𝑋(𝑖𝑖), 𝜇𝜇𝑋𝑋)) =  𝑑𝑑𝑀𝑀

𝐾𝐾 2(𝑋𝑋(𝑖𝑖), 𝑋𝑋(⌈𝑘𝑘∙𝛽𝛽⌉))
2
 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … , 𝑛𝑛. 

 

Step 1. 𝜒𝜒𝐾𝐾;𝛼𝛼(𝑖𝑖)
2 (𝑑𝑑𝑀𝑀

𝐾𝐾 2(𝑋𝑋(𝑖𝑖), 𝜇𝜇𝑋𝑋)) =  𝑑𝑑𝑀𝑀
𝐾𝐾 2(𝑋𝑋(𝑖𝑖), 𝑋𝑋(⌈𝑘𝑘∙𝛽𝛽⌉))

2
 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … , 𝑛𝑛. 

 
for i = 1, …, n.
Step 8.  Sort the value of the degree of isolation. Then,

(i)   if a global outlier identified in step 3 has the degree 
of isolation significantly larger than β, then we classify 
the observation as a local and global functional outlier.
(ii) if other observation has the degree of isolation 
significantly larger than β, then we classify the 
observation as local functional outlier.
(iii)  otherwise, the observation is regular observation.

RESULTS AND DISCUSSION

The performance of the proposed method was studied 
via simulation. For this purpose, we generate the 
multivariate spatial functional data based on a truncated 
Karhunen-Loéve representation of functional data 
(Happ & Greven 2018) with the spatial covariance that 
corresponds to the given distance. The result from the 
proposed method is then compared to that of the other 
functional outlier detection methods in terms of their 
capability to detect functional outliers in the data.

DATA SIMULATION

The simulation data set consists of 30 spatial points or 
stations with the XY coordinates. The coordinates are 
generated from a random uniform distribution. The 
Euclidean distance between stations is calculated to 
generate the spatial covariance matrix for the data. Thus, 
the spatial covariance matrix is defined according to the 
exponential model C(h) = 2 exp 𝐶𝐶(ℎ) = 2 𝑒𝑒𝑒𝑒𝑒𝑒 (− ℎ

100
) with ℎ = ‖𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑗𝑗‖,   𝑖𝑖, 𝑗𝑗 = 1, … , 30.  

 

 with  h = || si - sj 
||, i, j = 1,…, 30.

Next, the bivariate functional data samples with 
50 time points at each station are generated. The data 
is modelled by the Karhunen-Loéve representation of a 
function X(i) = (X1

(i), X2
(i)) truncated at J given by

(7)

with a zero multivariate mean function μ(t) and  
multivariate eigenfunctions ϕ j, j = 1, …, J. The 

 𝜒𝜒𝐾𝐾;𝛼𝛼(𝑖𝑖)
2 (𝑑𝑑𝑀𝑀

𝐾𝐾 2(𝑋𝑋(𝑖𝑖), 𝜇𝜇𝑋𝑋)) =  𝑑𝑑𝑀𝑀
𝐾𝐾 2(𝑋𝑋(𝑖𝑖), 𝑋𝑋(⌈𝑘𝑘∙𝛽𝛽⌉))

2
 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … , 𝑛𝑛. (6) 

   𝜒𝜒𝐾𝐾;𝛼𝛼(𝑖𝑖)
2 (𝑑𝑑𝑀𝑀

𝐾𝐾 2(𝑋𝑋(𝑖𝑖), 𝜇𝜇𝑋𝑋)) =  𝑑𝑑𝑀𝑀
𝐾𝐾 2(𝑋𝑋(𝑖𝑖), 𝑋𝑋(⌈𝑘𝑘∙𝛽𝛽⌉))

2
 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … , 𝑛𝑛. (6) 

  

(𝑋𝑋1
(𝑖𝑖), 𝑋𝑋2

(𝑖𝑖)) truncated at 𝐽𝐽 given by 

𝑋𝑋(𝑖𝑖)(𝑡𝑡) = 𝜇𝜇(𝑡𝑡) + ∑𝐽𝐽
𝑗𝑗=1 𝜉𝜉𝑖𝑖,𝑗𝑗 𝜙𝜙𝑗𝑗(𝑡𝑡),   𝑖𝑖 = 1, … , 𝑁𝑁, 𝑡𝑡 = (𝑡𝑡1, 𝑡𝑡2) ∈ 𝐼𝐼1 × 𝐼𝐼2  (7) 

 

(𝑋𝑋1
(𝑖𝑖), 𝑋𝑋2

(𝑖𝑖)) truncated at 𝐽𝐽 given by 

𝑋𝑋(𝑖𝑖)(𝑡𝑡) = 𝜇𝜇(𝑡𝑡) + ∑𝐽𝐽
𝑗𝑗=1 𝜉𝜉𝑖𝑖,𝑗𝑗 𝜙𝜙𝑗𝑗(𝑡𝑡),   𝑖𝑖 = 1, … , 𝑁𝑁, 𝑡𝑡 = (𝑡𝑡1, 𝑡𝑡2) ∈ 𝐼𝐼1 × 𝐼𝐼2  (7) 

 



  1469

individual scores ξi, j = 〈〈X(i), ϕj〉〉 are realizations of 
random variables ξj with expected value is zero and 
the variance is λj with eigenvalues λj > 0. For the 
eigenfunctions, the scores are generated through 
Fourier basis function through ξi, j ~ N(0,λj). For the 
eigenvalues λj, we choose a linear λj = (J-j+1)/J. Then, 
for bivariate data, the eigenfunctions are calculated 
based on tensor products of univariate functional 
data. Thus, for 30 functions on I = [1,50]×[1,50], the 
eigenfunctions are calculated as tensor products of J1=10 
eigenfunctions of the Fourier basis function on [1,50] and 
J2 = 10 eigenfunctions of the Fourier basis function on 
[1,50]. The generated samples are obtained using MFPCA 
in R package.

For the multivariate spatial functional data, the 
generated multivariate functional data are obtained by 
multiply the bivariate functional data with the spatial 
covariance coefficent. Thus, the new data are spatially 
correlated which depends on the distance between the 
spatial points. Next, a random uniform value is added to 
the original function of a randomly chosen spatial point 
to introduce a global functional outlier in the data. As a 
result, the value of the functional Mahalanobis distance 
of this spatial point is greater than the critical chi-square 
value for the degree of freedom K = 2 with a critical 

alpha value of 0.025. Figure 2 shows that spatial point 3 
is outside the ellipse since it is a global functional outlier 
but its corresponding neighbors are far inside the ellipse. 
Thus, spatial point 3 may also be a global and/or local 
functional outlier.

Meanwhile, a local functional outlier was set-up by 
randomly selecting a spatial point as the targeted local 
functional outlier and determine the nearest neighbors 
of the point on the XY-coordinates. Then, the function is 
added by the average value of the neighboring functions. 
So that, the function is different from its neighboring 
spatial points and the value of the functional Mahalanobis 
distance of the spatial point must be within the critical 
chi-square value for degree of freedom, K = 2 at a critical 
alpha value of 0.025. Another consideration should 
be noted is that the local functional outlier and the 
neighboring stations should be different from the global 
functional outlier in order to correctly measure the spatial 
functional outlier detection performance.

SIMULATION RESULTS

For the simulations, the experiment was repeated 200 
times for different sizes of neighbors,  k = 5, 10, 20, 
30 and β = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5. We introduce 
10% and 20% contamination of outliers in the data. 

FIGURE 2. Scores plot of bivariate spatial functional data
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The performance of the MDSO method is measured 
by calculating the misclassification error rate and area 
under the curve (AUC) values as adopted in previous 
studies (López-Pintado et al., 2014; Ojo, Fernández 
Anta & Lillo 2019; Sun & Genton 2011). The best 
results should not only detect the outliers, but also avoid 
misclassifying good observations as outliers. The results 
of the simulation are presented in Tables 1 and 2 for 10% 
and 20% contamination, respectively.

Overall, the method performs well when β = 0.3 
where the mean AUC is consistently high for each 
number of neighbors k. The mean AUC value is high for 
β = 0.3 as fewer regular spatial points are misclassified 
as outliers. Besides, for smaller values of proportion of 
neighborhood β = 0.05, the mean AUC value is reduced 
because many regular spatial points are misclassified 
as outliers. Moreover, for the high proportion of 

neighborhood, the mean AUC values start to decrease 
due to many true outliers are unidentified. 

The appropriate number of neighbors, k depends 
on the sample size of the data. From both Tables 1 and 2, 
when the size of the data is 30 and 50, a high mean AUC 
value is observed for k = 10, while when the size is 100 
and 200, a high mean AUC value is recorded for k = 30. 

Thus, for larger sample sizes, we require larger k to 
obtain good outlier detection. However, the mean AUC 
value decreases as many neighbors are considered. This 
is due to the fact that, when larger k is considered, there 
is a higher possibility that true outliers will also be chosen 
among the neighbors. Hence, the corresponding value 
of degree of isolation will be lower and the true outliers 
fail to be identified. In addition, the mean AUC values 
are slightly higher when more percentage of outliers are 
added in the data and as expected, the higher the sample 
sizes considered, the larger the mean AUC values are.

TABLE 1. Mean AUC for different k = 5, 10, 20, 30,  β = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and for 10% outliers contaminated 
within the data

Sample size k
 β

0.05 0.1 0.2 0.3 0.4 0.5

30

5 0.381 0.589 0.740 0.745 0.615 0.513

10 0.455 0.554 0.480 0.750 0.690 0.618

20 0.530 0.461 0.369 0.683 0.596 0.609

30 - - - - - -

50

5 0.563 0.695 0.698 0.802 0.777 0.523

10 0.665 0.713 0.754 0.840 0.788 0.496

20 0.610 0.793 0.801 0.829 0.795 0.534

30 0.642 0.694 0.773 0.833 0.830 0.810

100

5 0.828 0.856 0.856 0.887 0.839 0.704

10 0.815 0.820 0.886 0.902 0.840 0.668

20 0.680 0.842 0.902 0.908 0.906 0.897

30 0.735 0.856 0.906 0.909 0.907 0.903

200

5 0.906 0.913 0.913 0.947 0.909 0.797

10 0.886 0.889 0.930 0.948 0.923 0.839

20 0.752 0.885 0.943 0.950 0.912 0.782

30 0.858 0.899 0.947 0.951 0.897 0.767
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TABLE 2. Mean AUC for different k =5, 10, 20, 30,  β = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and for 20% outliers contaminated 
within the data

Sample 
size k

 β

0.05 0.1 0.2 0.3 0.4 0.5

30

5 0.389 0.545 0.687 0.837 0.779 0.591

10 0.598 0.617 0.680 0.817 0.784 0.742

20 0.515 0.627 0.799 0.815 0.805 0.561

30 - - - - - -

50

5 0.672 0.769 0.793 0.891 0.877 0.631

10 0.628 0.681 0.837 0.894 0.871 0.731

20 0.618 0.711 0.854 0.889 0.860 0.708

30 0.581 0.688 0.810 0.842 0.803 0.515

100

5 0.807 0.843 0.848 0.904 0.881 0.654

10 0.718 0.750 0.860 0.910 0.903 0.663

20 0.630 0.695 0.892 0.930 0.906 0.748

30 0.653 0.711 0.899 0.946 0.902 0.804

200

5 0.871 0.888 0.888 0.940 0.928 0.814

10 0.794 0.814 0.906 0.949 0.944 0.850

20 0.613 0.734 0.913 0.967 0.948 0.861

30 0.616 0.696 0.918 0.971 0.941 0.856

COMPARISON OF METHOD 

The performance of the MDSO method is compared with 
the existing methods of outlier detection for multivariate 
functional data. We review the following existing outlier 
detection methods, namely, Magnitude-Shape Plot or 
MS-Plot (Dai & Genton 2018), Functional Outlier Map 
or FOM (Rousseeuw, Raymaekers & Hubert 2018), 
Weighted Modified Band Depth or WMBD (Ieva & 
Paganoni 2013), Multivariate Outliergram or MulOut 
(Arribas-Gil & Romo 2014) and Modified simplicial 
band depth or MSBD (López-Pintado et al. 2014). 

The results in Table 3 show that the performance 
of the proposed detection method, MDSO is generally 
better than the other existing methods. For data with 
10% contamination, MDSO, MS-Plot and FOM detect 
all true outliers and only MS-Plot shows 27% false 
detection whereas the other two methods recorded no 
false detection. Thus, the accuracy for MDSO and the 

MS-Plot are 100% while the accuracy for MS-Plot is only 
75%. The WMBD, MulOut, and MSBD performance are 
also good with the accuracy is more than 50% but the 
TPR is too low and the FPR is considerably high.

For the case of a higher rate of contamination (15% 
and 20% of outliers in the data), the same pattern of 
results is observed, but with lower performance measures 
for all methods. In addition, the accuracy result for 
MDSO is still the highest compared to the other methods, 
indicating the superiority of the proposed method. 
Some methods, such as the FOM, are comparable in 
performance to the MDSO in detecting functional outliers. 
However, unlike MDSO, they cannot distinguish the types 
of outliers in the simulation study. 

APPLICATION TO REAL DATA

We apply the proposed spatial functional outlier 
detection method to a real data set, the water quality 
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of Sungai Klang data set. The data contains monthly 
observations of seven water quality parameters for 
s = 35 stations, averaged over the years 2013 to 
2016, provided by the Department of Environment 
Malaysia.  The water quality monitoring stations 
are located within the states of Selangor and Kuala 
Lumpur in Malaysia (Figure 3). The data consists of 
several water quality parameters, which are dissolve 
oxygen (DO), bio-chemical oxygen demand (BOD), 
chemical oxygen demand (COD), suspended solids 
(SS), ammoniacal nitrogen (NH3NL), temperature, and 
pH. These parameters are important for assessing the 

quality of river water. In addition, the XY coordinates 
of these stations are also recorded in the data. Most of 
the monitoring stations are located in the middle stretch 
of Sungai Klang basin, which indicates the importance 
of preserving good water quality in the area. 

We apply the MDSO method by selecting the 
number of neighbors, k = 10 and the proportion of 
neighbors, β = 0.3. The MDSO method identified 
Stations 2 and 6 as the global functional outliers as the 
stations have high multivariate functional Mahalanobis 
semi-distances which exceed the cut-off point, √𝜒𝜒3;0.9752  as shown by Figure 4. 
as shown by Figure 4. 

TABLE 3. Mean and standard deviation (in parentheses) of TPR, FPR and accuracy of outlier detections for each outlier 
detection methods with different contamination rates

Method TPR FPR Accuracy

10% contamination

MDSO 1.00 (0.00) 0.00(0.00) 1.00 (0.00)

MS-plot 1.00 (0.00) 0.27(0.04) 0.75 (0.04)

FOM 1.00 (0.00) 0.00(0.00) 1.00 (0.00)

WMBD 0.20 (0.00) 0.00(0.00) 0.92 (0.00)

MulOut 0.00 (0.00) 0.09 (0.02) 0.81 (0.02)

MSBD 0.39 (0.24) 0.28 (0.03) 0.68 (0.05)

15% contamination

MDSO 0.979 (0.05) 0.000 (0.00) 0.997 (0.01)

MS-plot 1.000 (0.00) 0.247 (0.05) 0.788 (0.04)

FOM 0.993 (0.03) 0.003 (0.02) 0.996 (0.01)

WMBD 0.143 (0.00) 0.000 (0.00) 0.88 (0.00)

MulOut 0.000 (0.00) 0.094 (0.02) 0.779 (0.02)

MSBD 0.236 (0.12) 0.310 (0.02) 0.626 (0.03)

20% contamiantion

MDSO 0.890 (0.14) 0.000 (0.00) 0.978 (0.03)

MS-plot 1.000 (0.00) 0.181 (0.07) 0.855 (0.05)

FOM 0.840 (0.30) 0.000 (0.00) 0.968 (0.06)

WMBD 0.100 (0.00) 0.000 (0.00) 0.820 (0.00)

MulOut 0.000 (0.00) 0.109 (0.01) 0.713 (0.01)

MSBD 0.250 (0.10) 0.304 (0.03) 0.607 (0.04)
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FIGURE 3. Map of 35 stations in Sungai Klang basin

FIGURE 4. Multivariate functional Mahalanobis semi-distance

As for local functional outliers, the MDSO method 
gives the degree of isolation as shown in Figure 5. Only 
one station, which is Station 6, has a high degree of 
isolation that exceeds the dashed line at 0.3. Thus, Station 

6 is identified as a local functional outlier. In addition, 
Station 6 is also identified as a global functional outlier 
and hence, this station is identified as a global and local 
functional outlier. 
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DISCUSSION

We consider Stations 2 and 6 for a detailed description of 
the results. Figure 6 shows both stations that are detected 
as global functional outliers have remarkably high TSS 
values at the beginning and end of the time study. 

In Figure 7, for every water quality parameter, the 
functional curve for Station 6 (red) is slightly different 
compared to its neighbors (blue), even though Station 6 
(red) is geographically close to its neighbors (blue) on 
the map. The DO values of Station 6 are slightly higher 
than its neighbors in almost cases. For example, from the 
beginning of the time study until the middle of 2013 
and from the beginning of the year 2014 until the middle 
of 2014. The DO values of Station 6 were the highest from 
the end of 2015 until the beginning of 2016. 

In addition, the corresponding function of TSS for 
Station 6 has a significant difference in magnitude and 
shape compared to its neighboring stations. As shown in 
Figure 7, from January 2013 until April 2013, the TSS 
function (red) lies farther above 100 mg/L. Then, the 

function steadily fluctuated above its neighbors (blue) 
until the middle of 2014. Next, even though the function 
(red) is within the range of its neighbors (blue) until the 
end of the study, the difference in shape of the function 
(red) is clear, especially at the end of 2016. 

Based on the comprehensive analysis of Stations 
2 and 6, a valuable insights regarding the river water 
quality can be obtained. By identifying the functional 
outliers and highlighting the significant deviations of 
the decremental water quality parameters, this analysis 
enables  the authorities to gain critical information for 
understanding the temporal and spatial variations in 
water quality. This is particularly important, especially 
in the densely populated areas or industrial zones.  
Moreover, these information enables proactive initiative 
to reduce potential environmental risks and ensure 
sustainable and effective management of water resources 
in the region.  In addition, the information can be used 
to aid the authorities in making better decisions on the 
management of the river basin.  

FIGURE 5. Degree of isolation for each station

FIGURE  6. The smoothed functional data for TSS mg/L
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CONCLUSION

In this paper, we propose a new detection method for 
identifying spatial outliers in multivariate functional 
datasets. We introduce the multivariate pairwise functional 

Mahalanobis semi-distance metrics based on the 
multivariate functional principal components analysis to 
calculate the dissimilarity between functions of attributes 
at each spatial point. Then, we develop a new method 

FIGURE 7. The multivariate functional data and the map of the stations for the 
local functional outliers and the corresponding neighbors
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called Mahalanobis Distance Spatial Outlier (MDSO) 
to detect spatial functional outliers. In the simulation 
study, the MDSO method outperforms existing 
methods by accurately detecting multivariate spatial 
functional outlier and global and/or local functional 
outliers. The study shows that the performance of the 
outlier detection method is good when the fraction of 
neighbors, β is equal to 0.3 and the number of nearest 
neighbors, k is not chosen too large; in this experiment, 
k is equal to 10. For the real data application, we 
consider water quality data of Sungai Klang basin. We 
detect one station as the global and local functional 
outlier using the MDSO. The water quality parameter 
function at this station diverges significantly in both 
magnitude and shape from those of its neighbors. By 
identifying the outliers, we highlight the necessity for 
targeted intervention and management strategies to be 
implemented in this area.  In conclusion, this study 
contributes not only to the development of outlier 
detection methods in functional data but also provides 
the need to understand the effect of the types of outliers 
in multivariate spatial functional data.
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