The Malaysian Journal of Analytical Sciences Vol 11 No 1 (2007): 8 – 16

 

CHARACTERISATION OF ALIPHATIC AND POLYCYCLIC AROMATIC HYDROCARBONS IN ENVIRONMENTAL

TOBACCO SMOKES

 

Mohammad Fais Fadzil and Norhayati Mohd Tahir

 

Environmental Research Group (ERG), Faculty of Science and Technology

Kolej Universiti Sains dan Teknologi Malaysia (KUSTEM)

Mengabang Telipot,  21030 Kuala Terengganu, Terenggan

 

Abstract

A   study  has  been  conducted  to  investigate  the  distribution  of  aliphatic  and  polycyclic  aromatic   hydrocarbons  in Environmental Tobacco Smoke (ETS). ETS is the smoke that is present in the ambient air due to smoking of tobacco. Types of cigarettes (C1R1 and C6R1) were chosen based on a result of a simple survey carried out to determine the consumer’s choice of cigarette brand. In analyzing the ETS, volunteers were asked to smoke each brand of cigarette in a closed room and the ETS was then collected using the High Volume Air Sampler fitted with a glass fiber filter. Smoke samples from the glass fiber filter were then extracted using Ultrasonic Agitation and fractionated into aliphatic and aromatic fraction using silica- alumina column. Identification and  quantification was  done using   gas  chromatography with  flame  ionization  detector. Results indicated  the  presence  of   n-alkanes  in  ETS,  ranging  from  C13     to  C36     with  an  odd  to  even  carbon  number predominance with  Carbon Preference Index (CPI) values ranging from  3.34 to  4.90. Total identified resolved aliphatic hydrocarbons (TIRAH) concentration found in ETS ranged from 590 µg m-3 to 591 µg m-3 with  the  percentage of  plant   wax n-alkanes ranging from  61% to 64% of the TIRAH found in ETS samples. In source apportionment, CPI >  1 and high percentage of plant wax n-alkanes has generally been associated with the contribution of terrestrial plant source, thus this result indicates that even after curing process and smoking of tobacco, the overall signature of the source of n-alkanes is still preserved. Amount of PAHs detected in all ETS samples ranged from 11.7 ng m-3 to 56.1 ng m-3. Results also indicated the presence of medium to high molecular weight PAHs with dominant presence of benzo[g,h,i]perylene compound. This result seems to support the contention that smoking process involves a high temperature burning with an oxygen deficient zone in the cigarette itself. Although the concentrations were low, the carcinogenic and mutagenic PAHs were still present in the respective ETS making the passive smokers vulnerable to diseases resulted from exposure to PAHs.

 

Keywords: environmental tobacco smokes, hydrocarbons, n-alkanes, PAHs, gas -chromatography

 

References

1.         Dube, M.F. & Green, C.R. 1982. Methods of collection of smoke of smoke for analytical purpose. Rec. Adv. Tob. Sci. 8: 42-102

2.         Severson, R.F., Snook, M.E., Chortyk, O.T., & Arrendale, R.F. 1976. A chromatographic analysis for  polynuclear aromatic hydrocarbons in small quantities of cigarette smoke condensate. Beitr. Tabakforsch. 8: 273-282

3.         Snook, M.E., Severson, R.F. & Arrendale, R.F. 1977. The identification of high molecular weight polynuclear aromatic hydrocarbons in a biologically active fraction of cigarette smoke condensate. Beitr. Tabakforch 9: 79-101.

4.         Snook, M.E., Severson, R.F., Higman, H.C., et al. 1976. Polynuclear aromatic hydrocarbons of tobacco smoke isolation and identification. Beitr. Tabakforsh 8: 250-272

5.         Arrendale, R.F., Severson, R.F. & Snook, M.E. 1980. Quantitative determination of naphthalene in tobacco smoke by gas chromatography. Beitr. Tabakforsch. 10: 100-105.

6.         Lu, H. & Zhu, L. 2006. Pollution patterns of polycyclic aromatic hydrocarbons in tobacco smoke. Journal of Hazardous Materials. Article in Press.

7.         Ding, Y.S., Trommel, J.S., Yan, X.J., Ashley, D. & Watson, C.H. 2005. Determination of 14  polycyclic  aromatic hydrocarbons in mainstream smoke from domestic cigarettes. Environ. Sci. Technol. 39: 471-478.

8.         Baek, S.O. & Jenkins, R.A. 2004. Characterization of trace organic compounds associated with aged  and diluted sidestream smoke aerosol by two step laser mass spectrometry. Atmos. Environ. 38: 6583-6599.

9.         Daisey,  J.M.,  Mahanama,  K.R.R.  &  Hodgson,  A.T.,  1994.  Final  Report:  Toxic  volatile  organic  compounds  in environmental smoke: Emission factors for modeling exposure of California populations. Indoor environment program energy and environment division, Lawrence Berkeley Laboratory, University of California, Berkeley, California. Pp 31

10.   Cecinato, A., Fabio, M., Patrizia, D.F., Luca, L. & Massimiliani, P. 1999.  Dstribution of  n-alkanes, polynuclear aromatic hydrocarbons and nitrated polynuclear aromatic hydrocarbons between the fine  and  the coarse fraction of inhalable atmospheric particulares. J. Chromatography 846: 255-264.

11.      Tan, H.S. 2003. Characterisation of hydrocarbons in aerosols from biomass burning of selected  vegetation. B. Sc. Thesis 97 pp. University College Science and Technology Malaysia, K. Terengganu, Terengganu, Malaysia.

12.      Davis, B.R., Houseman, T.H. & Roderick, H.R. 1973. Studies of cigarette smoke transfer using  radioisotopically labeled tobacco constituent. Part III. The use of dotriacontane-16, 17-14C as a marker for deposition of cigarette smoke in the respiratory system of experimental animals. Beitr. Tabakforch., 7: 115-148.

13.      Wong, K.Y. 1997. Analysis of hydrocarbon compounds in marine and soil system. B. Sc. Thesis 118 pp. University of Malaya, Kuala Lumpur, Malaysia.

14.      Tso, T.C. 1972. Production, Physiology and Biochemistry of Tobacco Plants. Ideals Inc. Beltsville. Maryland, U.S.A

15.      Simoneit, B.R.T., Rogge, W.F., Cary, Q. & Jaffe, R. 2000b. Molecular characterization of smoke camp fire burning of pine wood (Pinus elliotti). Chemosphere: Global Change Science 2: 107-122.

16.      Wornat, M.J., Elmer, B.L. & Nathan D.M. 2001. Polycyclic aromatic hydrocarbons from the pyrolysis of catechol, a model fuel representative of entities in tobacco, coal and lignin. Fuel 80:1711-1726.

17.      Finlayson-Pitts, B.J. & Pitts, J.N. 1986. Atmospheric chemistry: Fundamentals and experimental  techniques. Atmos. Environ. 33: 877-895

18.      Keith, C.H. 1982. Particles size studies on tobacco smoke. Beitr. Tabakforch. Int. 4: 123-131

19.      Ingebrethesen, B.J., Heaver, D.L. &  Angel,  A.L.  1986. A comparative study of environmental  tobacco smoke  particulate mass measurement in an environmental chamber. Paper presented at the Int. experimental Symposium of Passive Smoking, Essen, Institute of Hygiene and Occupational Medicine.

20.      Ingebrethesen, B.J. & Sears, S.B. 1989. Particle evaporation of sidestream smoke in a stirred tank. J. Coll. Interface Sci. 131: 526-536.

21.      Benner, C.L, Bayona, J.M. & Caka, F.M. 1989. Chemical composition of environmental tobacco smoke. 2. Particulate phase compounds. Environ. Sci. Technol. 23: 688-699

22.      Baker, R.R. 1975a. Temperature variation within a cigarette combustion coal during the smoke cycle. High Temp Sci. 7: 236-247

23.      Grimmer, G. 1983. Environmental Carcinogens: Polycyclic Aromatic Hydrocarbons, CRC Press, Boca Raton, Fla.

24.      De Sauza, J.E. & Scherbak, M. 1964. The effect of glycerol added to tobacco on the constituents of cigarette smoke. Analyst vol. 89: 735-739

25.   Sheldon, L., Clayton, A., Keever, J., Perrit R. & Whitaker D. 1993. Indoor concentrations of  polycyclic aromatics hydrocarbons in California residences, Draft Final Report, contract no. A033-132, Research triangle Institute.

26.      American Conference of Governmental  Industrial  Hygienists  (ACGIH). 1986. Documentation of  Threshold Limit Values and Biological Exposure Indices, ACGIH, Cincinnati.

27.      WHO-Euro, 1987. Air quality guidelines for Europe. WHO Regional Publications, European Series  No.  23, WHO Regional Office for Europe, Copenhagen, Denmark.

28.      United Nations Environmental Program. 1991. Urban Air Pollution, UNEP/GEMS Environment Library, No. 4.




Previous                    Content                    Next