The Malaysian Journal of Analytical Sciences Vol 11 No 1 (2007): 294 – 301

 

 

EFFECT OF NUMBER OF WASHING ON THE CHARACTERISTICS OF COPPER OXIDE NANOPOWDERS

 

E.N. Muhamad1, R. Irmawati*1 , A.H. Abdullah1 , Y.H. Taufiq - Yap1 

and S.B. Abdul Hamid2

 

1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia,

43400 UPM Serdang, Selangor, Malaysia.

2Combinatorial Technology and Catalysis Centre, Universiti Malaya,

50603 Lembah Pantai, Kuala Lumpur, Malaysia.

 

*Corresponding author: irmawati@science.upm.edu.my

 

Abstract

The effect of washing on physico-chemical properties of copper oxide prepared via precipitation method was investigated by means of  X-ray diffraction (XRD ), Fourier Transform Infrared (FTIR), BET surface  area  measurement  and  scanning electron microscopy (SEM ). Increasing the number of washing has successfully removed undesired nitrate resulting in high surface area CuO catalysts from 8.5 to 15.9 m2 g-1. XRD pattern of thes e oxides gave well crystalline of  CuO  with main peak appeared at 2 = 35.5°, 38.7° and 48.7°. The powders obtained are of uniform size distribution, finely grained with an average size of 20 nm. In addition, an investigation on the mobility of oxygen species carried out using transient technique  i.e. temperature programmed reduction (TPR) shows that reduction peak maximum moved towards lower reduction temperature with the increasing number of washing. This indicates the ease of reducibility of the oxide when the precursor is washed several times. It is clearly found that particle size was profound effect on the catalytic activity of CuO.

 

Keywords: copper oxide, precipitation method, effect of washing, TPR, reduction

 

References

1.         M.Campana ti, G. Fornasari and A. Vaccari,  2003,  Fundamentals  in the preparation  of  heterogeneous  catalysts, Catal. Today, 77,299-314.

2.         M .M.  Bettahar, G. Costentin,  L. Savary and J.C. Lavalley, 1996, On the partial oxidation of propane and propylene on mixed metal oxide catalysts, Appl. Catal. A, 145, 1 – 48.

3.         C.C. Chien, W.P. Chuang and T. J. Huang, 1995, Effect of heat -treatment conditions on the Cu -Cr/  -alumina catalyst for carbon monoxide and propene oxidation, Appl. Catal. A, 131, 73-87.

4.         P.H. Klug, L.E. Alexander, 1974,   X-ray diffraction procedures for polycrystalline and amorphous materials, Wiley, New York,  618.

5.         N.S.  Prasad,  K.B.R.  Varma,  2002, Nanocrystallization  of SrBi 2Nb2O9     from glasses  in the system  Li2B4O7-SrO-Bi2O3- Nb2O5, Mater. Sci. Eng., B90, 246 – 253.

6.         J.L. Li and T. Inui, 1996, Characterization  of precursors of methanol synthesis catalysts,  copper/zinc/aluminium  oxides, precipitated at different pHs and temperatures, Appl. Catal. A, 137, 105-117.

7.         M. Fadoni and L. Lucarelli, 1999, Temperature programmed de sorption, reduction, oxidation and flow chemisorption for the characterisation of heterogeneous catalysts - theoretical aspects, instrumentation and applications, 38.

8.         M.F. Luo, Y.J. Zhong, X.X. Yuan and X.M. Zheng, 1997, TPR and TPD studies of CuO/CeO 2   catalysts for low temperature CO oxidation, Appl. Catal. A, 162, 121-131.

9.         P.A. Redhead, 1961, Chemisorption on Polycrystalline Tungsten, Trans. Faraday Soc ., 57, 641.




Previous                    Content                    Next