The Malaysian Journal of Analytical Sciences Vol 14 No 1 (2010): 69 – 75

 

 

 

Removal of As(V) by Ce(IV)-exchanged zeolite P USING column method

 

Md Jelas Haron*1, Farha Abd Rahim1, Mohd Zobir Hussein1,

Abdul Halim Abdullah1, Anuar Kassim1,  S.M. Talebi2

 

1Chemistry Department,

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

2Department of Chemistry and Environmental Science,

University of Isfahan, 81744 Isfahan, Iran

 

*Corresponding author: mdjelas@science.upm.edu.my

 

Abstract

Zeolite P was modified by ion exchange with Ce(IV) cation (Ce4ZP) and its performance for removal of As(V) anion using column method is described.    The removal of As(V) was strongly depending on the bed depth, influent flow rate and initial As(V) concentration.  The increase in bed depth enable more water can be treated, but with a slight reduction in adsorption capacity.  At lower flow rate, the quantity of treated water and adsorption capacity were found to increase.  At higher influent concentrations, better adsorption capacity was observed.  The theoretical service times evaluated from bed depth service time (BDST) model for different flow rates and influent As(V) concentrations shows good correlation with the experimental data.

 

Keywords: Arsenate, BDST model, Ce(IV)-zeolite P, column, adsorption

 

References

1.     Cantor KP, Drinking water and cancer. Cancer Causes Control 8:292-308 (1997).

2.     Brooks WE, Miner. Commodity Summ. U.S. Geol. Surv. p. 23 (2007).

3.     Johannesson M, The Market Implication of Integrated Management for Heavy Metals Flows for Bioenergy Use in the European Union, Kalmar University, Kalmar, Sweden, p. 115 (2002).

4.     Huang CP, Pan JR, Lee M and Yen S, Treatment of high-level arsenic-containing wastewater by fluidized bed crystallization process. J. Chem. Technol. Biotechnol. 82:289-294 (2007).

5.     Leis M, Casey RJ and Caridi D, The management of arsenic wastes: problems and prospects. J. Hazardous Materials B76: 125-138 (2000).

6.     Galer JM, Delmas R and Loos-Neskovic C in: Progress in Ion Exchange: Advances and Applications, A Dyer, MJ Hudson, PA Williams (Eds.), The Royal Society of Chemistry, U.K, p. 187 (1997).

7.     Raven KP, Jain A, and Loeppert RH, Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelop. Env. Sci. Technol. 32:344-349 (1998).

8.     Huang JG and Liu JC, Enhanced removal of As(V) from water with iron-coated spent catalyst. Sepn. Sci. Technol. 32: 1557-1569 (1997).

9.     Bhatia S, Zeolite catalysis: Principles and applications, CRC Press, Florida, (1990).

10.  Li Z, Anghel I and Bowman RS, Sorption of oxyanions by surfactant-modified zeolite. J. Dispersion Sci. Technol. 19: 843-857 (1998).

11.  Campos V and Buchler PM, Anionic sorption onto modified natural zeolites using chemical activation. Environ. Geol. 52:1187-1192 (2007).

12.  Xu YH, Ohki A and Maeda S, Removal of arsenate, phosphate and fluoride ions by aluminum-loaded Shirasu-zeolite. Toxicol. Environ. Chem. 76: 111-119 (2000).

13.  Elizalde-González MP, Mattusch J, Einicke WD and Wennrich R, Sorption on natural solids for arsenic removal. Chem. Eng. J. 81:187-195 (2001).

14.  He G, Yang J, Yu X and Yue Y, Assessment of arsenic removal from drinking water by new adsorbent. Research Report from the National Institute for Environmental Studies, Japan, 166:4044 (2001) 

15.  Zhang Y, Yang M, Mindou X, He H and Wang DS, Arsenate adsorption on Fe-Ce bimetal oxide adsorbent: Role of surface properties. Environ. Sci. Technol. 39:7246-7253 (2005).

16.  Md Jelas Haron, Farha Ab Rahim, Abdul Halim Abdullah, Mohd Zobir Hussein and Anuar Kassim, Kinetic and Thermodynamic of Arsenic Sorption by Cerium(IV)-exchanged Zeolite P, in Recent Advances in Ion Exchange Theory and Practice (Proceedings of IEX 2008), M. Cox (Ed.), Cambridge, 2008, pp 291-299.

17.  R.A. Hutchins, New method simplifies design of activated-carbon system, Am. J. Chem. 80 (1973) 133–138.

18.  K. Vijayaraghavan, J. Jegan, K. Palanivelu, M. Velan, Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column, J. Hazard. Mat. 113B (1–3) (2004) 223–230.

19.  P.B. Bhakat, A.K. Gupta, S. Ayoob, Feasibility analysis of As(III) removal in a continuous flow fixed bed system by modified calcined bauxite (MCB), Journal of Hazardous Materials, B139 (2007) 286–292.

20.  Z. Aksu, F. G¨onen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Proc. Biochem. 39 (2003) 599–613.

21.  D.C.K. Ko, J.F. Porter, G. McKay, Optimised correlations for the fixed-bed adsorption of metal ions on bone char, Chem. Eng. Sci. 55 (2000) 5819–5829.

 




Previous                    Content                    Next