Malaysian Journal of Analytical Sciences Vol 19 No 1 (2015): 236 – 243

 

 

 

SYNTHESIS AND CHARACTERIZATION OF COPPER(II) CARBOXYLATE WITH PALM-BASED OLEIC ACID BY ELECTROCHEMICAL TECHNIQUE

 

(Sintesis dan Pencirian Kuprum (II) Karboksilat dengan Asid Oleik Berasaskan Sawit Menggunakan Teknik Elektrokimia)

 

Norazzizi Nordin, Wan Zurina Samad, Muhammad Rahimi Yusop, Mohamed Rozali Othman*

 

School of Chemical Sciences and Food Technology,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

*Corresponding author: rozali@ukm.edu.my

 

 

Abstract

Cu(II) oleate (Cu(II)Ol) complexes were synthesized using an electrochemical technique in the presence of palm-based oleic acid as the ligand and Cu ions from the released of anode material through the electrochemical oxidation of Cu foil. The system consisted of Cu foil and a graphite rod as the anode and cathode, respectively, while ammonium acetate (CH3COONH4) was used as a supporting electrolyte. The optimal parameters to synthesis of Cu(II) oleate complexes from 0.1 M oleic acid are using 10 V of applied voltage in the presence of 0.5 M CH3COONH4 for 2 hours of electrolysis time at room temperature (~27 °C). The results from spectroscopic studies using FTIR, XPS and UV-Vis confirms the existence of bonding between the coordinated carboxylate group of oleic acid with Cu(II) ions. This proved that the desired Cu(II) oleate complexes were successfully synthesized using electrochemical techniques. The surface morphology of the complex was analyzed using FESEM, and the micrograph obtained showed that the synthesized complexes formed thread-like structures.

 

Keywords: copper complexes; oleic acid, electrochemical synthesis

 

Abstrak

Kompleks Cu(II) oleat telah disintesis menggunakan teknik elektrokimia dalam kehadiran asid oleik berasaskan sawit sebagai ligan dan ion Cu daripada pelepasan bahan anod melalui pengoksidaan elektrokimia kepingan Cu. Sistem sintesis elektrokimia terdiri daripada kepingan Cu dan rod grafit masing-masing bertindak sebagai anod dan katod manakala larutan ammonium asetat (CH3COONH4) digunakan sebagai elektrolit penyokong. Parameter optimum untuk sintesis kompleks Cu(II) oleat daripada 0.1 M asid oleik adalah dengan menggunakan keupayaan 10 V dalam kehadiran 0.5 M CH3COONH4 selama 2 jam masa sintesis pada suhu bilik (~27 °C). Keputusan yang diperolehi daripada kajian spektroskopi menggunakan FTIR, UV-Nampak dan XPS mengesahkan kewujudan ikatan antara kumpulan karboksilat pada asid oleik dengan ion Cu(II). Ini membuktikan bahawa kompleks Cu(II) oleat yang diingini telah berjaya disintesis menggunakan teknik elektrokimia. Morfologi permukaan kompleks tersebut telah dianalisis menggunakan FESEM dimana mikrograf yang diperolehi menunjukkan kompleks yang disintesis membentuk struktur seakan bebenang.

 

Kata kunci: kompleks kuprum; asid oleik; sintesis elektrokimia

 

References

1.       Van Niekerk, J.N. and Schoening, F.R.L. (1953). A new type of copper complex as found in the crystal structure of cupric acetate, Cu2(CH3COO)4.2H2O. Acta Crystallogr., 6: 227-232.

2.       Chen, L., Meng, H., Jiang, L. and Wang, S. (2011). Fatty-acid-metal-ion complexes as multicolor superhydrophobic coating materials. Chem.–Asian J., 6: 1757-1760.

3.       Wang, S., Feng, L. and Jiang, L. (2006). One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces. Adv. Mater., 18: 767-770.

4.       Papaefstathiou, G.S. and MacGillivray, L.R. (2003). Inverted metal-organic frameworks: solid-state hosts with modular functionality. Coordin. Chem. Rev., 246: 169-184.

5.       Mao, G., Dong, W., Kurth, D.G. and Mohwald, H. (2004). Synthesis of copper sulfide nanorod arrays on molecular templates. Nano Lett., 4: 249-252.

6.       Kim, Y.H., Kang, Y.S. Lee, W.J., Jo, B.G. and Jeong, J.H. (2006). Synthesis of Cu nanoparticles prepared by using thermal decomposition of Cu-oleate complex. Mol. Cryst. Liq. Cryst., 445: 231-238.

7.       Nasibulin, A.G., Kauppinen, E.I., Brown, D.P. and Jikiniemi, J.K. (2001). Nanoparticle formation via copper (II) acetylacetonate vapor decomposition in the presence of hydrogen and water. J. Phys. Chem. B, 105: 11067-11075.

8.       Doyle, A., Felcman, J., Teresa, M. and Braganc, M.L.  (2000). Anhydrous copper (II) hexanoate from cuprous and cupric oxides. The crystal and molecular structure of Cu2(O2CC5H11)4. Polyhedron, 19: 2621–2627.

9.       Iqbal, M., Ali, S., Muhammad, N. and Sohail, M. (2013). Synthesis, crystal structures and electrochemical characterization of dinuclear paddlewheel copper(II) carboxylates. Polyhedron, 57: 83–93.

10.    Wojciechowski, K., Bitner, A., Bernardinelli, G. and Brynda, M. (2009). Azacrown ether – copper (II)– hexanoate complexes. From monomer to 1-D metal organic polymer. Dalton T., 7: 1114-1122.

11.    Vaughan, G.B.M., Sghmidt, S. and Poulsen, H.F. (2004). Multicrystal approach to crystal structure solution and refinement. Z. Kristallogr., 219: 813-825.

12.    Kozlevcar, B., Leban, I., Petric, M., Petricek, S., Roubeau, O., Reedijk, J. and Segedin, P. (2004). Phase transitions and antiferromagnetism in copper(II) hexanoates: a new tetranuclear type of copper carboxylate paddle-wheel association. Inorg. Chim. Acta, 357: 4220–4230.

13.    Jaskova, J., Miklos, D., Korabik, M., Jorik, V., Segl’a, P., Kalinakova, B., Hudecova, D., Svorec, J., Fischer, A., Mrozinski, J., Lis, T. and Melnik, M. (2007). Synthesis, spectral and magnetic properties and crystal structures of copper(II) pyridinecarboxylates as potential antimicrobial agents. Inorg. Chim. Acta, 360: 2711-2720.

14.    Goto, M., Kani, Y., Tsuchimoto, M., Ohba, S., Matsushima, H. and Tokii, T. (2000). Dimeric copper(II) 3,3-dimethyl­butyrate adducts with ethanol, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine and 3,3-dimethylbutyric acid. Acta Crystallogr. C, 56: 7-11.

15.    Wojciechowski, K., Kucharek, M. and Buffle, J. (2008). Mechanism of Cu(II) transport through permeation liquid membranes using azacrown ether and fatty acid as carrier. J. Membrane Sci., 314: 152-162.

16.    Kissinger, P.T. and Heineman, W.R. (1996). Laboratory Techniques in Electroanalytical Chemistry. Marcel Dekker Inc., New York.

17.    Sengil, I.A. and Ozacar, M. (2009). The decolorization of C. I. Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes. J. Hazard. Mater., 161: 1369-1376.

18.    Sakalis, A., Fytianos, K., Nickel, U. and Voulgaropoulos, A. (2006). A comparative study of platinised titanium and niobe/synthetic diamond as anodes in the electrochemical treatment of textile wastewater. Chem. Eng. J., 119: 127-133.

19.    Mahoney, D.M. and Mossaad, G.S. (1995). Electrosynthesis of Metal Carboxylate. United States Patent US5443698 A.

20.    Wang, J. (2001). Analytical Electrochemistry. John Wiley & Sons Inc., New York.

21.    Kozlevcar, B., Lah, N., Makuc, S. and Segedin, P. (2000). Copper(II) carboxylate- synthesis, structure and biological activity. IV. fatty acid copper(II) carboxylates with urea. Acta Chim. Slov., 47: 421–434.

22.    Deng, D., Qi, T., Cheng, Y., Jin, Y. and Xiao, F. (2014). Copper carboxylate with different carbon chain lengths as metal-organic decomposition ink. J. Mater. Sci.: Mater. Electron., 25: 390-397.

23.    Zhu, X., Zhang, Z., Xu, X., Men, X., Yang, J., Zhou, X. and Xue, Q. (2012). Facile fabrication of a superamphiphobic surface on the copper substrate. J. Colloid Interf. Sci., 367: 443-339.

 

Previous                    Content                    Next