Malaysian Journal of Analytical Sciences Vol 19 No 3 (2015): 603 – 610

 

 

 

COMPARISON OF THREE SAMPLE PREPARATION METHODS FOR ANALYIS OF CHEMICAL WARFARE AGENT

SIMULANTS IN WATER

 

(Perbandingan Tiga Kaedah Penyediaan Sampel bagi Analisis Agen Simulan Senjata Kimia

di dalam Air)

 

Alessandro Sassolini1,4*, Andrea Malizia1,2, Fabrizio D’Amico1,2, Orlando Cenciarelli1,2, Mariachiara Carestia1,2, Daniele Di Giovanni1,2, Leonardo Palombi2,3, Maurizio Guidotti4, Carlo Bellecci1,2, Pasquale Gaudio1,2

 

1Department of Industrial Engineering,

2Department of Industrial Engineering and School of Medicine and Surgery,

3Department of Bio-Medical & Prevention, School of Medicine and Surgery,

University of Rome Tor Vergata, Rome, Italy

4Regional Agency of Environmental Protection, Rieti, Italy

 

*Corresponding author: alessandro.sassolini@arpalazio.it

 

 

Received: 9 March 2015; Accepted: 5 April 2015

 

 

Abstract

Analytical chemistry in CBRNe (Chemical Biological Radiological Nuclear explosive) context requires not only high quality data; quickness, ruggedness and robustness are also mandatory. In this work, three samples preparation methods were compared using several organophosphorus pesticides as test compounds, used as simulants of nerve CWA (Chemical Warfare Agents) to choose the one with best characteristics. Result was obtained better with the Dispersive Liquid-Liquid Micro Extraction (DLLME), relatively new in CBRNe field, obtaining uncertainty for different simulants between 8 and 15% while a quantification limit between 0.01 and 0.08 µg/l. To optimize this extraction method, different organochlorinated solvents also tested but not relevant difference in these tests was obtained. In this work, all samples were analyzed by using a gas chromatography coupled with mass spectrometer (GC-MS) and also with Gas Chromatograph coupled with Nitrogen Phosphorous Detector (NPD) for DLLME samples to evaluate a low cost and rugged instrument adapt to field analytical methods with good performance in terms of uncertainty and sensibility even if poorer respect to the mass spectrometry.

 

Keywords:    NBC deployable laboratory, CBRNe, chemical warfare agents, dispersive micro liquid - liquid extraction, nerve agent simulants

 

Abstrak

Kontek analisis kimia di CBRNe (letupan radiologikal nuclear kimia biologi) memerlukan bukan hanya data yang berkualiti tinggi; kepantasan, kelasakan dan ketegugan juga adalah mandatori. Di dalam kajian ini, tiga kaedah penyediaan sampel dibandingkan menggunakan beberapa racun perosak organofosforus sebagai sebatian ujian, yang digunakan sebagai simulan CWA (Agen Senjata Kimia) untuk memilih ciri-ciri terbaik. Keputusan yang diperolehi adalah lebih baik dengan kaedah Pengekstrakan Mikro Cecair - Cecair Serakan (DLLME), yang agak baru di dalam bidang CBRNe, yakni ujian ketakpastian bagi simulant berbeza di antara 8 dan 15% manakala had kuantifikasi di antara 0.01 dan 0.08 μg/l. Untuk mengoptimumkan kaedah pengekstrakan ini, pelarut organoklorin berbeza juga diuji tetapi perbezaan tidak relevan telah diperolehi di dalam kajian ini. Di dalam kajian ini, semua sampel telah dianalisis dengan menggunakan kromatografi  gas bergabung dengan pengesan spektrometer jism (GC-MS) dan juga kromatografi gas bergabung dengan pengesan nitrogen fosforus (NPD) untuk sampel DLLME untuk menilai kebolehupayaan instumen yang kos rendah dan lasak dengan prestasi yang baik dari aspek ketakpastian dan sensitif meskipun kurang berbanding spektrometri jisim

 

Kata kunci: Makmal NBC, CBRNe, agen senjata kimia, pengekstrakan mikro cecair – cecair serakan, ejen saraf simulan

 

References

1.       Brown, G., Carlyle, M., Salmerón, J., and Wood, K. (2006). Defending critical infrastructure. Interfaces36(6): 530-544.

2.       Rinaldi, S.M., Peerenboom, J.P., and Kelly, T.K. (2001). Identifying, understanding, and analyzing critical infrastructure interdependencies. Control Systems, IEEE, 21(6):11-25.

3.       Sassolini, A., Malizia, A., D’Amico, F., Carestia, M., Di Giovanni, D., Cenciarelli, O., Bellecci, C., and Gaudio, P. (2014). Evaluation of the effectiveness of titanium dioxide (TiO2) self cleaning coating for increased protection against CBRN incidents in critical infrastructures. Defense S&T Technical Bulletin, 7(1): 9-17.

4.       Wein, L.M., and Liu, Y. (2005). Analyzing a bioterror attack on the food supply: the case of botulinum toxin in milk. Proceedings of the National Academy of Sciences of the United States of America102(28): 9984-9989.

5.       Cacciotti, I., Aspetti, P.C., Cenciarelli, O., Carestia, M., Di Giovanni, D., Malizia, A., D’Amico, F., Sassolini, A., Bellecci, C., and Gaudio, P. (2014). Simulation of Caesium-137 (137Cs) local diffusion as a consequence of the Chernobyl Accident Using Hotspot. Defence S&T Technical Bulletin, 7(1): 18-26.

6.       Cenciarelli, O., Pietropaoli, S., Frusteri, L., Malizia, A., Carestia, M., D'Amico, F., Sassolini, A., Di Giovanni, D., Tamburrini, A., Palombi, L., Bellecci, C., and Gaudio, P. (2014). Biological emergency management: the case of Ebola 2014 and the air transportation involvement. Journal of Microbial Biochemistry and Technology, 6: 247-253.

7.       Steiner, W.E., Klopsch, S.J., English, W.A., Clowers, B.H., and Hill, H.H. (2005). Detection of a chemical warfare agent simulant in various aerosol matrixes by ion mobility time-of-flight mass spectrometry. Analytical chemistry, 77(15), 4792-4799.

8.       Mäkinen, M. A., Anttalainen, O. A., and Sillanpää, M. E. (2010). Ion mobility spectrometry and its applications in detection of chemical warfare agents. Analytical chemistry, 82(23): 9594-9600.

9.       Smith, P. A., Koch, D., Hook, G.L., Erickson, R.P., Jackson Lepage, C.R., Wyatt, H.D., Betsinger, G., and Eckenrode, B.A. (2004). Detection of gas-phase chemical warfare agents using field-portable gas chromatography–mass spectrometry systems: instrument and sampling strategy considerations. TrAC Trends in Analytical Chemistry, 23(4): 296-306.

10.    Hooijschuur, E.W., Hulst, A.G., De Jong, A.L., de Reuver, L.P., van Krimpen, S.H., van Baar, B.L., Wils, E.R.J., Kientz. C.E., and Brinkman, U.A.T. (2002). Identification of chemicals related to the chemical weapons convention during an interlaboratory proficiency test. TrAC Trends in Analytical Chemistry, 21(2): 116-130.

11.    Hooijschuur, E. W., Kientz, C. E., & Brinkman, U. A. T. (2002). Analytical separation techniques for the determination of chemical warfare agents. Journal of Chromatography A, 982(2): 177-200.

12.    Sigeikin G., Rybalchencko I.V., and Kireyev A.F. (2007). General strategy for identification of toxic chemicals and relevant compounds in verification laboratory. Atlantic Association for Research in the Mathematical Sciences, 6(1): 9-15.

13.    Technical Secretariat of the OPCW. (2009). Agilent 6850 GC with 5975 series or upgraded 5973 inert MSD on-site analysis. The Hague, QDOC/LAB/WI/GCMS10, Rev. 0, Annex 3.

14.    United States Environmental Protection Agency (EPA). (2007). Method 3571: Extraction of solid and aqueous samples for chemical agents. Available on Line at: http://www.epa.gov/osw/hazard/testmethods/pdfs/3571.pdf. Last Access: July 28, 2014.

15.    Popiel, S., and Sankowska, M. (2011). Determination of chemical warfare agents and related compounds in environmental samples by solid-phase microextraction with gas chromatography. Journal of Chromatography A, 1218 (47), 8457-8479.

16.    Kimm, G. L. (2002). Application of Headspace Solid Phase Microextraction and Gas Chromatography/Mass Spectrometry for Rapid Detection of the Chemical Warfare Agent Sulfur Mustard. Uniformed Services University of The Health Sciences, Bethesda, MD. Department of Preventive Medicine and Biometrics.

17.    Berijani, S., Assadi, Y., Anbia, M., Milani Hosseini, M.R., and Aghaee, E. (2006). Dispersive liquid–liquid microextraction combined with gas chromatography-flame photometric detection: Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. Journal of Chromatography A, 1123(1): 1-9.

18.    Cheng, J., Zhou, Y., Zuo, M., Dai, L., and Guo, X. (2010). Application of dispersive liquid–liquid microextraction and reversed phase-high performance liquid chromatography for the determination of two fungicides in environmental water samples. International Journal of Environmental and Analytical Chemistry, 90(11): 845-855.

19.    Fattahi, N., Assadi, Y., Hosseini, M.R.M., and Jahromi, E.Z. (2007). Determination of chlorophenols in water samples using simultaneous dispersive liquid–liquid microextraction and derivatization followed by gas chromatography-electron-capture detection. Journal of Chromatography A, 1157(1), 23-29.

20.    Rezaee, M., Assadi, Y., Milani Hosseini, M.R., Aghaee, E., Ahmadi, F., and Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography A, 1116(1): 1-9.

21.    Sarafraz-Yazdi, A., and Amiri, A. (2010). Liquid-phase microextraction. TrAC Trends in Analytical Chemistry, 29(1): 1-14.

22.    Bartelt-Hunt, S. L., Knappe, D. R., and Barlaz, M. A. (2008). A review of chemical warfare agent simulants for the study of environmental behavior. Critical Reviews in Environmental Science and Technology 38(2): 112-136.

23.    Application Note 794-0717 SUPELCO GC Analysis of Organophosphorus Pesticides (OP-Pest) on a 5% Phenyl Column after SPME using 100 μm PDMS Fiber Access Online: http://www.sigmaaldrich.com/catalog/product/supelco/7940717?lang=it&region=IT#

24.    Eisert, R., and Levsen, K. (1995). Determination of organophosphorus, triazine and 2, 6-dinitroaniline pesticides in aqueous samples via solid-phase microextraction (SPME) and gas chromatography with nitrogen-phosphorus detection. Fresenius' Journal of Analytical Chemistry, 351(6): 555-562.

 




Previous                    Content                    Next