Malaysian Journal of Analytical Sciences Vol 19 No 3 (2015): 472 – 480

 

 

 

IMMOBILIZATION OF SPENT ION EXCHANGE RESIN FROM PUSPATI TRIGA REACTOR USING FLY ASH-BASED GEOPOLYMER

 

(Pemegunan Resin Penukar Ion Terpakai dari Reaktor TRIGA PUSPATI Menggunakan Geopolimer Berasaskan Abu Terbang)

 

Nurul Wahida Ahmad Khairudin1,2*,Muhamad Samudi Yasir1, Amran Ab Majid1, Mohd Abd Wahab2,

Nik Marzukee2, Wilfred Paulus2, Esther Philip2, Thanaletchumy2, M.N Irwan1

 

1School of Applied Physics, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

2Malaysian Nuclear Agency, 43000 Kajang, Selangor, Malaysia

 

*Corresponding author: nwahida@nuclearmalaysia.gov.my

 

 

Received: 10 July 2014; Accepted: 1 April 2015

 

 

Abstract

A laboratory study was conducted to evaluate the possibility of immobilizing spent ion exchange resins using geopolymer process that was prepared at room temperature. The main objective of this research is to determine the suitability of using geopolymer in radioactive waste immobilization. The spent ion exchange resins and fly ash were obtained from PUSPATI TRIGA Reactor and Sultan Salahuddin Abdul Aziz Power Plant, Kapar, Selangor respectively. The geopolymer was activated with NaOH and Na2SO3 at room temperature. Gamma spectrometry analysis indicated the presence of 40K, 226Ra and 232Th in fly ash while in spent ion exchange resins showed the presence of activation and fission products i.e. 134Cs, 137Cs, 152Eu, 54Mn, 58Co, 60Co and 65Zn. The composition of the materials that made up the monolith was 10% (wt) of spent ion exchange resin, with a compressive strength of 6.1 MPa. The leaching rates of the radionuclides were used as indicators of immobilization performance of the solidified waste forms. The leaching test shows different leaching rates of 134Cs, 137Cs, 226Ra, 60Co and 40K from the monolith geopolymer. The results show that immobilization of spent ion exchange resins using fly ash based geopolymer significantly affect the leaching rate of the radionuclides. This finding could in future benefits the treatment of low level and intermediate waste generated from nuclear power plant operation.

 

Keywords: spent ion exchange resins, geopolymer, fly ash, radioactive waste

 

Abstrak

Kajian makmal telah dijalankan untuk menilai kemungkinan pemegunan resin penukar ion terpakai menggunakan proses geopolimer berasaskan abu terbang yang telah disediakan pada suhu bilik. Objektif utama kajian ini adalah untuk menentukan kesesuaian pemegunan sisa radioaktif menggunakan geopolimer. Resin penukar ion terpakai dan abu terbang diperolehi daripada Reaktor PUSPATI TRIGA (RTP) dan Loji Janakuasa Salahuddin Sultan Abdul Aziz, Kapar, Selangor. Geopolimer ini diaktifkan dengan campuran larutan NaOH dan Na2SO3 pada suhu bilik. Analisis spektrometri gama didalam abu terbang menunjukkan kehadiran 40K, 226Ra dan 232Th manakala resin penukar ion terpakai menunjukkan kehadiran radionuklid pengaktifan dan pembelahan iaitu 134Cs, 137Cs, 152Eu, 54Mn, 58Co, 60Co dan 65Zn. Komposisi bahan yang membentuk monolit geopolimer adalah 10 % (berat) daripada resin penukar ion terpakai, dengan kekuatan mampatan sebanyak 6.1 MPa. Kadar larut lesap jangka panjang bagi radionuklid digunakan sebagai petunjuk prestasi pemegunan sisa radioaktif. Ujian larut lesap jangka panjang dari monolith geopolimer menunjukkan kadar larut lesap yang berbeza bagi setiap radionuklid berikut: 134Cs, 137Cs, 226Ra, 60Co dan 40K. Keputusan menunjukkan bahawa pemegunan resin penukar ion terpakai menggunakan geopolimer berasaskan abu terbang memberi kesan ketara kepada kadar larut lesap monolith geopolimer. Penemuan ini boleh memberi manfaat kepada rawatan sisa tahap rendah dan sederhana pada masa depan yang dijana daripada operasi loji kuasa nuklear.

 

Kata kunci: resin penukar ion terpakai, geopolimer, abu terbang, sisa radioaktif

 

References

1.       Xu, H. and Van Deventer, J. S. J. (2000). The Geopolymerisation of Alumino-Silicate Minerals. International Journal of Mineral Processing, 59: 247-266.

2.       Davidovits, J. (1999). Chemistry of Geopolymeric System Terminology. Geopolymere‘99. Saint-Quentine, France, pp 9-39.

3.       Van Jaarsveld, J. G. S., Van Deventer, J. S. J. and Lukey, G. C. (2002). The Effect of Composition and Temperature on the Properties of Fly Ash and Kaolinite-Based Geopolymers. The Chemical Engineering Journal, 89(1-3): 63-73

4.       De Silva, P., Sagoe-Crenstil, K. and Sirivivatnanon, V. (2007). Kinetics of Geopolymerization: Role of Al2O3 and SiO2. Cement & Concrete Research, 37(4): 512 – 518.

5.       Elimbi, A, Tchakoute, H. K. and Njopwouo, D. (2011).  Effects of Calcination on Kaolinite Clays on the Properties of Geopolymer Cement. Construction and Building Materials 25: 2805–2812.

6.       Wang M. R., Jia D. C., He P. G. and Zhou, Y. (2010). Influence of Calcination Temperature of Kaolin on The Structure and Properties of Final Geopolymer. Materials Letters 64: 2551-2554

7.       Harjito, D. and Tsen, M. Z. (2008). Strength and Thermal Stability of Fly Ash-Based Geopolymer Mortar. The 3rd International Conference-ACF/VCA.

8.       Geopolymer Alliance. (2009). Geopolymer Technology; An Opportunity to Enhance The Sustainability of The Mining and Construction Industries.            

9.       IAEA. (1983). Treatment of Low and Intermediate Level of Radioactive Waste, IAEA TRS 223, Vienna.

10.    IAEA. (2002). Application of Ion Exchange Processes for The Treatment of Radioactive Waste and Management of Spent Ion Exchangers.Vienna: International Atomic Energy Agency

11.    Osmanlioglu, A. E. (2007). Progress in Cementation of Reactor Resins. Progress in Nuclear Energy 49: 20-26

12.    Laili, Z., Omar, M., Ibrahim M. Z., Wahab, M. A., Karim, J. A. and Ibrahim, N. M. N. (2010). Characterisation of Spent Ion Exchange Resin from Puspati Triga Nuklear Malaysia. Proceeding Seminar R&D 2010, 12-15 October, Malaysian Nuclear Agency, Bangi, Selangor

13.    WasTeC. 2014. Rekod Khidmat Tahunan 2014.

14.    Duxson, P., Provis, J. L, Lukey, G. C, and Van Deventer, J. S. J. (2007). The Role of Inorganic Polymer Technology in the Development of ‘Green Concrete’. Cement and Concrete Research, 37 (12): 1590-1587.

15.    IAEA. (2003). Radioactive Waste Management Glossary.Vienna: International Atomic Energy Agency

16.    Sabuti, A. A., Ahmad, Z. and Mohamed, C. A. R. (2010).  Radioactivity of 210Po in the Environmental Samples from Kapar, Malaysia. Journal of Nuclear and Related Technology 7(1): 29 – 39.

17.    TNB Coal Procurement. (2013). Access online: http://www.tnb.com.my/ application/ uploads/ uploaded/ FAQCoalSpecs.pdf [3 Nov 2013]

18.    Omar, M., Laili, Z. and Hamzah, M. S., (2010). Judgment on The Presence of Radionuclides in Sample Analysis: A case Study. Jurnal Sains Nuklear Malaysia 24(1): 33 – 42.

19.    Masood, Z. (2010), Inspection of PUSPATI TRIGA reactor (RTP) Core and Control Rod, paper presented at IAEA Technical Meeting on Assessment of Core Structural Materials and Surveillance Programme of Research Reactors, Vienna, 14-18 June 2010.

20.    Masood, Z., Ligam, A. S, and Ismail, A.S. (2010). Monitoring Operational Safety Parameters at The PuspatiTriga Reactor: Practices And Findings, Prod Nuclear Science, Technology and Engineering Conference (NUSTEC), Serdang, 4-5 August 2010.

21.    Ramli, N. and Ab Rahim, A.N. (2010), Inspection of Puspati Triga Reactor Components and Structures for Assuring Integrity. Proc Nuclear Science, Technology and Engineering Conference (NUSTEC), Serdang 4-5 August 2010.

22.    IAEA. (1982). Nuclear Power, The Environment And Man, International Atomic Energy Agency (IAEA), Vienna.

23.    Argonne National Laboratory (2005), EVS Human Health Fact Sheet. Access online: www.remm.nlm.gov/ANL_ContaminantFactSheets_All_070418.pdf

24.    Lin, C.C. (1996). Radiochemistry in Nuclear Power Reactors, Vallecito Nuclear Center GE Nuclear Energy Pleasanton, California. Radiochemical Techniques. Nuclear Science Series, Nas-Ns-3119.

25.    UNSCEAR. (2000). ANNEX B Exposures From Natural Radiation Sources

26.    IAEA. (2003). Extent of Environmental Contamination by Naturally Occurring Radioactive Material (NORM) and Technological Options for Mitigation. IAEA Tech Report 419. Vienna: International Atomic Energy Agency

27.    IAEA. (1983). Conditioning of Low and Intermediate Radioactive Wastes. IAEA Tech Report 222. Vienna: International Atomic Energy Agency

28.    Perera, D.S., Blackford M.G., Vance, E.R, Hanna, J.V., Finnie, K.S. & Nicholson, C.L. (2004). Geopolymers for the Immobilization of Radioactive Waste. Materials Research Society Symposium Proceedings, 824: 607-612.

29.    Plecas, I., Pavlovic, R. & Pavlovic, S. (2004). Leaching Behavior of 60Co and 137Cs from Spent Ion Exchange Resins in Cement–Bentonite Clay Matrix. Journal of Nuclear Materials327(2–3):171-174.

 




Previous                    Content                    Next