Malaysian Journal of Analytical Sciences Vol 19 No 5 (2015): 1001 - 1018

 

 

 

KLASIFIKASI SUNGAI TROPIKA MENGGUNAKAN TEKNIK KEMOMETRIK: KAJIAN KES DI SUNGAI PAHANG, MALAYSIA

 

(Classification of Tropical River Using Chemometrics Technique: Case Study in

Pahang River, Malaysia)

 

Mohd Khairul Amri Kamarudin1,2*, Mohd Ekhwan Toriman1,3, Nur Hishaam Sulaiman1, Frankie Marcus Ata1,

Muhammad Barzani Gasim 1, Asyaari Muhamad1,4, Wan Adi Yusoff3, Mazlin Mokhtar5, Mohammad Azizi Amran1, Nor Azlina Abd Aziz1

 

1East Coast Environmental Research Institute (ESERI)

2Faculty of Design Arts and Engineering Technology

Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Terengganu, Malaysia

 3School of Social, Development and Environmental Studies, Faculty of Social Sciences and Humanities

4Institute of The Malay World and Civilisation (ATMA)

5Institute for Environment and Development

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: mkhairulamri@unisza.edu.my

 

 

Received: 14 April 2015; Accepted: 9 July 2015

 

 

Abstrak

Klasifikasi sungai adalah amat penting bagi mengetahui ciri-ciri asas sesuatu sungai di dalam penilaian pengurusan dan punca permasalahan sungai dari dasarnya. Artikel ini membincangkan kaedah pengkelasan sungai tropika dengan menggunakan teknik kemometrik yang telah dijalankan di Sungai Pahang. Berdasarkan kerja-kerja pengukuran sungai, penganalisisan data GIS dan Remote Sensing (RS), analisis kemometrik telah dijalankan bagi mengkelaskan ciri utama Sungai Pahang dengan menggunakan kaedah hierarchical agglomerative cluster analysis (HACA). Proses kalibrasi dan validasi model dijalankan dengan menggunakan kaedah analisis Discriminant Analysis (DA). Manakala kaedah Principal Component Analysis (PCA) pula dijalankan bagi mengenalpasti parameter yang paling mempengaruhi pembolehubah pengkelasan yang telah dijalankan. Hasil kajian menunjukkan, aliran utama Sungai Pahang dapat dikelaskan kepada tiga kelas utama iaitu hulu, tengah dan hilir sungai. Analisis DA menunjukkan kesahan 100% pada model pengkelasan ini. Manakala PCA menunjukkan terdapat tiga pembolehubah yang mempunyai pekali korelasi yang signifikan iaitu dominasi cerun dengan nilai R2 0.796, nisbah L/D nilai R2 -0.868 dan belokan (sinuosity) dengan nilai R2 0.557. Peta pergerakan klasifikasi sungai bersama zon-zon risiko dan proses perubahan geomorfologi sungai turut dihasilkan. Hasil kajian ini adalah penting dalam menyediakan data-data asas sebagai panduan kepada pengurusan sungai secara bersepadu di Sungai Pahang kursusnya dan di sungai bertropika umumnya.

 

Kata kunci: klasifikasi sungai, sungai tropika, Sungai Pahang, teknik kemometrik, geomorfologi sungai

 

Abstract

River classification is very important to know the river characteristic in study areas, where this database can help to understand the behaviour of the river. This article discusses about river classification using Chemometrics techniques in mainstream of Pahang River. Based on river survey, GIS and Remote Sensing database, the chemometric analysis techniques have been used to identify the cluster on the Pahang River using Hierarchical Agglomerative Cluster Analysis (HACA). Calibration and validation process using Discriminant Analysis (DA) has been used to confirm the HACA result. Principal Component Analysis (PCA) study to see the strong coefficient where the Pahang River has been classed. The results indicated the main of Pahang River has been classed to three main clusters as upstream, middle stream and downstream. Base on DA analysis, the calibration and validation model shows 100% convinced. While the PCA indicates there are three variables that have a significant correlation, domination slope with R2 0.796, L/D ratio with R2 -0868 and sinuosity with R2 0.557. Map of the river classification with moving class also was produced. Where the green colour considered in valley erosion zone, yellow in a low terrace of land near the channels and red colour class in floodplain and valley deposition zone. From this result, the basic information can be produced to understand the characteristics of the main Pahang River. This result is important to local authorities to make decisions according to the cluster or guidelines for future study in Pahang River, Malaysia specifically and for Tropical River generally. The research findings are important to local authorities by providing basic data as a guidelines to the integrated river management at Pahang River, and Tropical River in general.

 

Keywords: river classification, tropical river, Pahang river, chemometric techniques, river geomorpohology

 

References

1.       Chan, N.W. (2012). Managing urban rivers and water quality in Malaysia for sustainable water resources. International Journal of Water Resources Development 28(2): 343-354.

2.       Kamarudin, M. K. A., Toriman, M. E., Lun, P. I., Abdul Aziz, N. A. and Gasim, M. B. (2013). The hydrodynamic of Dong River, Hutan Lipur Lata Jarum, Pahang, Malaysia. Prudence Journal of Environmental Science Research 1(2): 5-11.

3.       Simons, J. B. (1969).  Introduction to Physical Hydrology, Ed.  London: Methuen & Co Ltd.

4.       Kamarudin, M. K. A., Toriman, M. E., Rosli, M. H., Juahir, H., Azid, A., Mohamed Zainuddin, S. F., Abdul Aziz, N. A. and Sulaiman, W. N. A. (2014). Analysis of Meander Evolution Studies on Effect from Land Use and Climate Change at Upstream Reach of Pahang River, Malaysia. Mitigation and Adaptation Strategies for Global Change: 1 – 16.

5.       Rosgen, D. L. (2007). Rosgen Geomorphic Channel Design.  Dlm.  J. Bernard, J. F. Fripp & K. R. Robinson (pnyt.). Ed.  Stream Restoration Design National Engineering Handbook (210-VI-NEH) 654 hlm. 1-76. Washington, D.C.: USDA Natural Resources Conservation Service.

6.       Lun, P. I., Gasim, M. B., Toriman, M. E., Rahim S. A. and Kamarudin, M. K. A. (2011). Hydrological Pattern of Pahang River Basin and Their Relation to Flood Historical Event. Jurnal e-Bangi 6(1): 29-37.

7.       BHonline. (2015). Terkini: Banjir di Kelantan, Terengganu, Pahang tambah buruk, Selasa Disember 23, 2014.

8.       Azid, A., Che Hasnam, C. N., Juahir, H., Amran, M. A., Toriman, M. E., Kamarudin, M. K. A., Mohd Saudia, M. S., Gasim, M. B. and Mustafa, A. D. (2015). Coastal Erosion Measurement along Tanjung Lumpur to Cherok Paloh, Pahang during the Northeast Monsoon Season. Jurnal Teknologi 74 (1): 27–34.

9.       Kamarudin, M. K. A., Toriman, M. E., Sarifah A., S. M, Idris, M., Jamil, N. R. and Gasim, M. B. (2009). Temporal Variability on Lowland River Sediment Properties and Yield. American Journal of Environmental Sciences 5(5): 657-663.

10.    Kamarudin, M.K.A., Idris, M. and Toriman, M.E. (2013). Analysis of Leptobarbus hoevenii in control environment at natural lakes. American Journal Agriculture Biology Sciences 8: 142-148.

11.    Heng, G. S. and Hing, T. T. (2000). Classifying Water Quality Along Sungai Pahang and its Tributaries. Sains Malaysiana 29: 257-272.

12.    Rosgen, D. L. (1994). A classification of natural rivers. Catena 22(3): 169-199.

13.    Rosgen, D.L., (1996). Applied river morphology. Wildland Hydrology, Pagosa Springs, Colorado. USA.

14.    Massart, D.L. and Kaufman, L. (1983). The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis. Wiley, New York.

15.    Azid, A., Juahir, H., Ezani, E., Toriman, M.E., Endut, A., Abdul Rahman, M. N., Yunus, K., Kamarudin, M.K.A., Che Hasnam, C. N., Mohd Saudia, M. S. and Umar, R. (2015). Identification Source of Variation on Regional Impact of Air Quality Pattern Using Chemometric. Aerosol and Air Quality Research 15(4): 1545-1558.

16.    Mohd Saudia, M. S., Azid, A., Juahir, H., Ezani, E., Toriman, M.E., Amran, M. A., Mustafaa, A. D., Azamana,  F., Kamarudin, M.K.A. and Mohd Saudib, M. (2015). Flood Risk Pattern Recognition Using Integrated Chemometric Method and Artificial Neural Network: A Case Study in the Johor River Basin. Jurnal Teknologi 74 (1): 159–164.

17.    Mohd Saudia, M. S., Juahir, H., Azid, A., Kamarudin, M.K.A., Kasim, M. F., Toriman, M.E., Abdul Aziz, N. A. Che Hasnam, C. N., Samsudin, M. S. (2015). Flood Risk Pattern Recognition Using Chemometric Technique: A Case Study in Kuantan River Basin, Jurnal Teknologi 72 (1): 137-141.

18.    Mohd Saudia, M. S., Juahir, H., Azid, A., Kamarudin, M.K.A., Toriman, M.E, Abdul Aziz, N.A. (2014). Flood Risk Pattern Recognition Using Chemometric Technique: A Case Study in Muda River Basin. Computational Water, Energy, and Environmental Engineering 3: 102-110.

19.    Zhou F., Liu Y. and Guo H., (2007). Application of Multivariate Statistical Methods to Water Quality Assessment of the Watercourses in Northwestern New Territories, Hong Kong.  Environmental Monitoring Assessment 132: 1-13.  

20.    Meglen R.R., (1992). Examining large databases: a chemo-metric approach using principal component analysis. Marine Chemistry 39: 217-237.  

21.    Marisol V., Rafael P., Enrique B. and Luis D., (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research 12: 3581–3592.

22.    Sarbu C. and Pop H.F., (2005). Principal component analysis versus fuzzy principal component analysis A case study: the quality of Danube water (1985-1996).  Talanta 65(5): 1215-1220.

23.    Chabukdhara M. and Nema A., (2012). Assessment of heavy metal contamination in Hindon River sediments: a chemometric and geochemical approach. Chemosphere 87:945–953.   

24.    Lim K.Y. and Surbeck C.Q. (2011). A multi-variate methodology for analyzing pre-existing lake water quality data.  J ournal Environmental Monitoring 13: 2477-2487.

25.    Michael John Saynor and Wayne D. Erskine. (2013). Classification of River Reaches on the Little Disturbed East Alligator River, Northern Australia. International Journal of Geosciences 4:53-65.

26.    Armas, I., Gogoaşe Nistoran, D. E., Osaci-Costache, G. and Braşoveanu, L. (2013). Morpho-dynamic evolution patterns of Subcarpathian Prahova River (Romania). Catena 100(0): 83-99.

27.    Ashmore, P. E. and Rennie, C. D. (2013). Gravel-bed rivers: from particles to patterns. Earth Surface Processes and Landforms 38(2): 217-220.

28.    Abdullah, N. M., Toriman, M. E., Md Din, H., Abd Aziz, N. A., Kamarudin, M. K. A., Abdul Rani, N. S., Ata, F. M., Saad, M. H., Abdullah, N. W., Idris, M. and Jamil, N. R. (2013). Influence of Spatial and Temporal Factors in Determining Rainfall Interception at Dipterocarp Forest Canopy, Lake Chini, Pahang. Malaysian Journal of Analytical Sciences 17 (1): 11–23.

29.    Toriman, M.E, Gasim, M. B., Yusop, Z., Shahid, I., Mastura, S. A. S., Abdullah, P., Jaafar, M., Abd Aziz, N. A., Kamarudin, M. K. A., Jaafar, O., Karim, O., Juahir, H., and Jamil, N. R. (2012). Use of 137Cs activity to investigate sediment movement and transport modeling in river coastal environment. American Journal Environmental Sciences 8: 417-423.

30.    Md Din, H., Toriman, M. E., Mokhtar, M., Elfithri, R., Abd Aziz, N. A., Abdullah, N. M. and Kamarudin, M. K. A. (2012). Loading Concentrations of Pollutant in Alur Ilmu at UKM Bangi Campus: Event Mean Concentration (EMC) Approach. Malaysian Journal of Analytical Sciences 16(3): 353–365.

31.    Rinaldi M., B. Wyzga and N. Surian, (2005). Sediment Mining In Alluvial Channels: Physical Effects and Management Perspectives. River Research Application 21: 805–828. 




Previous                    Content                    Next