Malaysian Journal of Analytical Sciences Vol 19 No 5 (2015): 1043 - 1055

 

 

 

HYDROGEN GAS PRODUCTION FROM GLYCEROL VIA STEAM REFORMING USING NICKEL LOADED ZEOLITE CATALYST

 

(Penghasilan Gas Hidrogen daripada Gliserol melalui Kaedah Pembaharuan Stim

dengan menggunakan Pemangkin Nikel-Zeolite)

 

Fazureen Azaman1, Hafizan Juahir1*, Mahadhir Mohamed2, Azman Azid1, Kamaruzzaman Yunus3,

Anis Farhana Abdul Rahman2, Wan Nur Anis Amira Wan Ranizang2,  Fara Aiza Md Sanin2,

Mohammad Azizi Amran1, Mohd Zaid Arqam Zainal Abidin1, Norsyuhada Hairoma1,

Nur Hishaam Sulaiman1, Ismail Zainal Abidin1

 

1East Coast Environmental Research Institute (ESERI),

Universiti Sultan Zainal Abidin, Gong Badak Campus,21300 Kuala Terengganu, Terengganu, Malaysia

2Department of Chemical Engineering, Faculty of Chemical Engineering,

Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia

3Kulliyyah of Science,

International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

 

*Corresponding author: hafizanjuahir@unisza.edu.my

 

 

Received: 14 April 2015; Accepted: 9 July 2015

 

 

Abstract

Glycerol is the main by-product of biodiesel production that produces from transesterification process. In this research, focused was on hydrogen production via glycerol steam reforming using nickel loaded HZSM-5 catalyst. The catalysts were prepared by using different loading amount of nickel (0.5, 1.0, 5.0, 10.0 and 15 wt %) on HZSM-5 catalyst through the wet impregnation method at temperature 500 ºC and atmospheric pressure. The catalyst was characterized by using XRD, FTIR and SEM. Then, only 15 wt % Ni loading has been chosen based on the parameter which is different range of catalyst weight (0.3-0.5g) at different range of glycerol flow rate (0.2-0.4mL/min) at temperature 600 ºC and atmospheric pressure. The products were analyzed by using gas-chromatography with thermal conductivity detector (GC-TCD) where it is used to identify the yield of hydrogen. The data of the experiment were analyzed by using Response Surface Methodology (RSM) in order to study the relationship of catalyst weight and glycerol flow rate. The results showed that the optimum condition to produce a maximum hydrogen yield with 15wt% Ni/HZSM-5 catalyst was 78.10004% at glycerol flow rate of 0.356484 mL/min and catalyst weight of 0.429267 g.

 

Keywords: glycerol, transesterification, biodiesel, HZSM-5, hydrogen

 

Abstrak

Gliserol adalah produk sampingan utama penghasilan biodiesel yang terhasil daripada proses transesterifikasi. Dalam kajian ini, fokus utama adalah kepada penukaran gliserol terhadap gas hidrogen telah menggunakan HZSM-5 yang diubahsuai dengan nikel. Kajian ini dijalankan dengan menggunakan pemangkin 0.5, 1.0, 5.0, 10.0 and 15% nikel/ ZSM-5  pada tekanan atmosfera dan suhu 500 ºC untuk penyediaan pemangkin. XRD, FTIR dan SEM digunakan untuk menganalisis struktur pemangkin. Kemudian, hanya 15 % nikel/ZSM-5 yang digunakan untuk menjalankan eksperimen seterusnya pada perbezaan berat pemangkin (0.3-0.5 g) dan kadar aliran gliserol (0.2-0.4 mL/min) pada tekanan atmosfera dan suhu 600 ºC. Produk ini akan dianalisis dengan menggunakan kromatografi gas (GC-TCD) untuk mengkaji peratus hydrogen terhasil. Keputusan eksperimen menunjukkan 78.10004% penghasilan optimum gas hidrogen oleh 15% Ni/HZSM-5 pada keadaan optimum iaitu pada kadar aliran gliserol = 0.356484 mL/min and berat pemangkin = 0.429267 g.

 

Kata Kunci:  gliserol, transesterifikasi, biodiesel, HZSM-5, hidrogen

 

References

1.       Gerpen., J. V. (2005). Biodiesel Processing and Production. Fuel Processing Technology 86: 1097– 1107.

2.       Shawn P. and Conley, B. T. (2006).  What is Biodiesel? BioEnergy, ID337.

3.       Xiaohu Fan, Burton, R. and Zhou, Y. (2010). Glycerol (Byproduct of Biodiesel Production) as a Source of Fuels and Chemicals-Mini Review. The Open Fuels and Energy Science Journal 3: 17-22.

4.       Adhikari, S., Fernando, S. D. and Haryanto, A. (2009). Hydrogen Production from Glycerol: An update. Energy Conversion and Management 50: 2600-2604.

5.       Adhikari S, Fernando S, To, F., Bricka R. M, Steele P. H. and Haryanto A. (2008). Conversion of Glycerol to Hydrogen via a Steam Reforming Process over Nickel Catalysts. Energy Fuel 22(2): 1220–1226.

6.       Iriondo, A., Barrio, V. L., Cambra, J. F., Arias, P. L., Guemez, M. B., Navarro, R. M., Sanchez-Sanchez, M. C. and Fierro, J. L. G. (2009). Influence of La2O3 Modified Support and Ni and Pt Active Phases on Glycerol Steam Reforming to Produce Hydrogen. Catalysis Communications 10: 1275-1278.

7.       Nichele, V., Signoretto, M., Menegazzo, F., Gallo, A., Santo, V. D., Cruciani, G. and Cerrato, G. (2012). Glycerol Steam Reforming for Hydrogen Production: Design of Ni Supported Catalysts. Applied Catalysis B: Environment 111: 225-232.

8.       Buhari, J. (2013). Hydrogen Production from Glycerol using Nickel Loaded Zeolite Catalyst. Degree Thesis. Universiti Teknologi Malaysia.

9.       Kusworo, T. D., Songip, A. R. and Amin, N. A. S. (2010). Optimization of Partial Oxidation of Methane for Hydrogen Production on NiO-CoO/MgO Catalyst using Design of Experiment. IJET-IJENS. 10(1): 1-8.

10.    Jong-San Chang, S.-E. P., Kyu-Wan Lee, and Myoung Jae Choi (1994). Catalytic Reforming of Methane with Carbon Dioxide over Pentasil Zeolite-Supported Nickel Catalyst. Studies in Surface Science and Catalysis, 84: 1587-1594 .

11.    Apanee, L. and Kaengsilalai, A. (2008). Activity of Different Zeolite-Supported Ni Catalyst for Methane Reforming with Carbon Dixode. Chemical Engineering Journal 144: 96-102.

12.    Na Shi, Q. L., Ting Jiang, T. W., Long, M., Qi Z. and Zhang, X., H. (2012). Hydrodeoxygenation of Vegetable Oils to Liquid Alkane Fuels over Ni/HZSM-5 Catalysts: Methyl Hexadecanoate as the Model Compound. Catalysis Communications 20: 80–84.

13.    Nezamzadeh-Ejhieh, A. and Shams-Ghahfarokhi, Z. (2013). Photodegradation of Methyl Green by Nickel-Dimethylglyoxime/ZSM-5 Zeolite as a Heterogeneous Catalyst. Journal of Chemistry: 1-11.

14.    Anne, M. G. P., Marcelo, J. B. S., Dulce, M. A. M. and Antonio. S. A. (2006). Cobalt and Nickel Supported on HY Zeolite: Synthesis, Characterization and Catalytic Properties. Materials Research Bulletin 41: 1105–1111.

15.    Yun, H. B. A. H. (2013). Hydrogen Production from Glycerol Using Copper and Nickel Loaded Zeolite Based Catalyst. Master Thesis. Universiti Teknologi Malaysia.

16.    Williams, C. W. P. T. (2009). Ni/CeO2/ZSM-5 Catalysts for the Production of Hydrogen from the Pyrolysis–Gasification of Polypropylene. International Journal of Hydrogen Energy 15: 6242-6252.

17.    Haaland, P. D. (1989). Experimental Design in Biotechnology. New York: Marcel Dekker Inc.

18.    Slinn, M., Kendall, K., Mallon, C. and Andrews, J. (2008). Steam Reforming of Biodiesel By-Product to make Renewable Hydrogen. Bioresource Technology 99: 5851-5858.

 

 




Previous                    Content                    Next