Malaysian
Journal of Analytical Sciences Vol 22 No 5 (2018): 914 - 920
DOI:
10.17576/mjas-2018-2205-20
FABRICATION OF CELLULOSE MICROSPHERES FROM MODIFIED
COTTON LINTER AND OIL PALM TRUNK FIBRE VIA EMULSION METHOD
(Fabrikasi Mikrosfera
Selulosa daripada Linter Kapas dan Gentian Batang Kelapa Sawit Termodifikasi
Melalui Kaedah Emulsi)
Balqis Az-Zahraa Norizan1,
Nurul Shuhadah Mahadi1, Nurul Nazatulatika Mohd Nizam1,
Sarani Zakaria1, Muhammad Fauzi Daud 2,
Sharifah Nabihah Syed Jaafar1*
1School of
Applied Physics, Faculty of Science and Technology,
Universiti
Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor, Malaysia
2Institute of Medical Science Technology,
Universiti Kuala
Lumpur Malaysia, 43000 Kajang, Selangor, Malaysia
*Corresponding
author: nabihah@ukm.edu.my
Received:
20 July 2017; Accepted: 28 April 2018
Abstract
In
this study, cellulose microspheres from modified cotton linter (CL) and oil
palm trunk fibre (OPTF) were fabricated by using simple emulsion method. The
cellulose was obtained from the CL and OPTF through the alkaline pre-treatment
and acid hydrolysis processes. The emulsion method was performed using
polyvinyl alcohol (PVA) as an emulsifying agent. The characterization of the
cellulose from CL and OPTF were analysed using Fourier transform infrared
spectroscopy (FTIR) and X-ray diffraction (XRD), and the morphological
characterizations of cellulose microspheres were later observed under optical
microscopy (OM) and field emission-scanning electron microscopy (FE-SEM). Based
on the results, FTIR spectra displayed the lignin and hemicellulose had removed
after treatments, while XRD revealed that the crystallinity index of OPTF and
CL was increased after the treatments. The
microspheres, formed with different ranges of
size between 80 to 150 µm under OM and
FE-SEM, showed the formation of pores on the surface of the microspheres.
Keywords:
emulsification, lignin, porous, field emission scanning electron
microscopy
Abstrak
Kajian ini dijalankan bagi
menghasilkan mikrosfera selulosa daripada linter kapas (LK) dan gentian batang
kelapa sawit (GBKS) melalui kaedah emulsi. Selulosa didapati daripada LK dan
gentian GBKS selepas proses pra-rawatan alkali dan hidrolisis asid. Manakala,
kaedah emulsi dijalankan dengan menggunakan polivinil alkohol (PVA) sebagai
agen pengemulsi. Pencirian selulosa daripada LK dan GBKS akan dianalisa menggunakan
analisis transformasi inframerah Fourier (FTIR) dan pembelauan sinar-X (XRD)
dan pencirian morfologi bagi mikrosfera selulosa dijalankan oleh mikroskopi optik
(OM) dan mikroskop elektron imbasan-pancaran
medan (FE-SEM). Berdasarkan keputusan FTIR yang diperoleh, lignin dan
hemiselulosa telah berjaya dibuang selepas rawatan, sementara itu, keputusan
XRD menunjukkan terdapat peningkatan pada indeks kehabluran bagi GBKS dan LK
selepas rawatan. Mikrosfera yang
terbentuk juga dapat diperhatikan melalui OM dengan saiz berjulat 80 hingga 150
µm dan FE-SEM pula menunjukkan penghasilan liang pada permukaan kedua-dua
mikrosfera.
Kata kunci: pengemulsi,
lignin, berliang, mikroskop elektron imbasan
pancaran medan
References
1.
Xiao,
Q., Zhou, K., Chen, C., Jiang, M., Zhang, Y., Luo, H. and Zhang, D. (2016).
Hollow and porous hydroxyapatite microspheres prepared with an O/W emulsion by
spray freezing method. Materials Science & Engineering C, 69: 1068-1674.
2.
Yang, H., Xie, Y., Hao, G., Cai, W. and Guo, X. (2015).
Preparation of porous alumina microspheres via n oil-in-water emulsion method
accompanied by a sol–gel process. New Journal of Chemistry, 40: 589-595.
3.
Dong, S., Bortner, M. J. and Roman, M. (2016). Analysis of
the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production:
a central composite design study. Industrial Crops and Products, 93: 76-87.
4.
Czaja, W. K., Young, D. J., Kawecki, M. and Jr., R. M.
(2007). The future prospects of microbial cellulose in biomedical applications.
Biomacromolecules, 8:
1-12.
5.
Kemala, T., Budianto, E. and Soegiyono, B. (2012).
preparation and characterization of microspheres based on blend of poly(lactic
acid) and poly(ε-caprolactone) with poly(vinyl alcohol) as emulsifier. Arabian
Journal of Chemistry, 5:
103-108.
6.
Suhaily, S. S., Jawaid, M., Abdul Khalil, H., Mohamed, A. and
Ibrahim, F. (2012). A review of oil palm biocomposites for furniture design and
applications: potential and challenges. BioResources, 7(3): 4400-4423.
7.
Tang,
Y., Shen, X., Zhang, J., Guo, D., Kong, F. and Zhang, N. (2015). Extraction of
cellulose nano-crystals from old corrugated container fibre using phosphoric
acid and enzymatic hydrolysis followed by sonication. Carbohydrate Polymers, 125: 360-366.
8.
Lamaming,
J., Hashim, R., Sulaiman, O., Leh, C. P., Sugimoto, T. and Nordin, N. A.
(2015). Cellulose nanocrystals isolated from oil palm trunk. Carbohydrate Polymers, 127: 202-208.
9.
Gan,
S., Padzil, F. N. M., Zakaria, S., Chia, C. H., Jaafar, S. N. S. and Chen, R.
S. (2015). Synthesis of liquid hot water cotton linter to prepare cellulose
membrane using NaOH/Urea or LiOH/Urea. BioResources,
10: 2244-255.
10.
Lamaming, J., Hashim, R., Leh, C. P., Sulaiman, O., Sugimoto,
T. and Nasir, M. (2015). Isolation and characterization of cellulose
nanocrystals from parenchyma and vascular bundle of oil palm trunk (Elaeis Guineensis). Carbohydrate
Polymers, 134: 534-540.
11.
Ramli, R., Junadi, N., Beg, M. D. and Yunus, R. M. (2015).
Microcrystalline cellulose (MCC) from oil palm empty fruit bunch (EFB) fibre
via simultaneous ultrasonic and alkali treatment. International Journal of
Chemical, Nuclear, Materials and Metallurgical Engineering, 9: 8-11.
12.
Salim, B. and Sorya, N. (2015). Effects of chemical
treatments on the structural, mechanical and morphological properties of
poly(vinylchloride)/spartium junceum fibre composites. Cellulose Chemistry
and Technology, 49:
375-385.
13.
Rhim, J.-W., Reddy, J. P. and Luo, X. (2014). Isolation of
cellulose nanocrystals from onion skin and their utilization for the
preparation of agar-based bio-nano composites films. Cellulose, 22: 407-420.
14.
Mohamad Haafiz, M., Hassan, A., Zakaria, Z. and Inuwa, I.
(2014). Isolation and characterization of cellulose nanowhiskers from oil palm
biomass microcrystalline cellulose. Carbohydrate Polymers, 103: 119-125.
15.
Nazir, M. S., Wahjoedi, B. A., Yussof, A. W. and Abdullah,
M. A. (2013). Eco-friendly extraction and characterization of cellulose from
oil palm empty fruit bunches. BioResources, 8: 2161-2172.
16.
Owolabi, A. F., Mohamad Haafiz, M., Hossain, M. S., Hussin,
M. H. and Nurul Fazita, M. (2017). Influence of alkaline hydrogen peroxide
pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm
fronds. International Journal of Biological Macromolecules, 95: 1228-1234.
17.
Lamaming, J., Hashim, R., Leh, C. P. and Sulaiman, O.
(2017). Properties of cellulose nanocrystals from oil palm trunk isolated by
total chlorine free method. Carbohydrate Polymers, 156: 409-416.
18.
Mi, Y., Li, J., Zhou, W., Zhang, R., Ma, G. and Su, Z.
(2016). Improved stability of emulsions in preparation of
uniform small-sized konjac glucomanna (KGM) microspheres with epoxy-based
polymer membrane by premix membrane emulsification. Polymers, 8: 1-13.
19.
Parida, P., Mishra, S. C., Sahoo, S., Behera, A. and Nayak,
B. P. (2016). Development and characterization of ethylcellulose based
microspheres for sustained release of nifedipine. Journal of Pharmaceutical
Analysis, 6: 341-344.
20.
Murakami, M., Matsumoto, A., Watanabe, C., Kurumado, Y. and
Takama, M. (2015). Fabrication of porous ethyl cellulose microspheres based on
the acetone-glycerin-water ternary system: Controlling porosity via the
solvent-removal mode. Drug Discoveries & Therapeutics, 9: 303-309.
21.
Qutachi, O., Vetsch, J., Gill, D., Cox, H., Scurr, D. and
Hofmann, S. (2014). Injectable and porous PLGA microspheres that form highly
porous scaffolds at body temperature. Acta Biomaterialia, 10: 5090-5098.