Malaysian Journal of Analytical Sciences Vol 22 No 6 (2018): 984 - 998

DOI: 10.17576/mjas-2018-2206-08

 

 

 

EFFECT OF GRAPHENE OXIDE AND CELLULOSE NANOFIBER TOWARDS MECHANICAL PROPERTIES OF POLYLACTIC ACID BASED ACTIVE PACKAGING USING RESPONSE SURFACE METHODOLOGY

 

(Kesan Grafin Oksida dan Gentian Fibril Selulosa Terhadap Kekuatan Mekanikal Pembungkus Aktif Menggunakan Kaedah Gerak Balas Permukaan)

 

Mohd Harfiz Salehudin1 and Ida Idayu Muhamad 1,2*

 

1Bioprocess and Polymer Engineering Department, School of Chemical and Energy Engineering, Faculty of Engineering

2Cardiac Biomaterials Cluster, IJN-UTM Cardiovascular Engineering Center Level 2, Block B, Building V01, School of Biomedical Engineering & Health Sciences, Faculty of Engineering

Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

 

*Corresponding author:  idaidayu@utm.my

 

 

Received: 16 April 2017; Accepted: 18 November 2018

 

 

Abstract

A simple preparation of functional nanoscale graphene oxide (GO) via synthetic route was done using modified Hummer’s Method whilst cellulose nanofiber from oil palm empty fruit bunch fiber was prepared using acid hydrolysis method. An active polylactide based nanocomposite film was prepared by incorporation of cellulose nanofiber (CNF), graphene oxide (GO) and essential oil (EO). In determining of factor influences the mechanical properties (tensile strength, elongation percentage and Young’s modulus), the response surface methodology (RSM) Box Behnken Design (BBD) were used. The factors considered were the ratio (wt.%) of GO and CNF as an additive and 5 wt.% of EO was set as minimum. The mechanical properties that interpreted as tensile strength, percent elongation and Young’s modulus were the response variables investigated. The ratio of EO wt.% (C) is found to be the most significant factor that influences the tensile strength of the nanocomposite. In the case of elongation percentage (%E) the percentage of cellulose nanofiber CNF (A) gave the most significant effect, where in Young’s modulus, EO wt.% (C) is the most significant effect, followed by wt.% of GO (B). Validation of optimization by carrying out the confirmation run high degree of prognostic ability of response surface methodology. The results showed that the optimized formulation provided a mechanical strength (tensile strength, percentage elongation and Young’s Modulus) pattern that is similar to the predicted curve, which indicated that the optimal formulation could be obtained using RSM.

 

Keywords:  cellulose nanofiber, graphene oxide, mechanical properties, active packaging, essential oil

 

Abstrak

Penyediaan sintetik serphihan nano grafin oksida telah dilakukan melalui kaedah terubahsuai Hummer. Selulosa nanofiber dari tandan kelapa sawit telah disediakan dengan menggunakan kaedah hidrolisis asid. Filem komposit aktif nano polilaktik disediakan melalui penggabungan selulosa nanofiber, grafin oksida dan minyak pati. Dalam mengenal pasti faktor nisbah bahan penambah ke atas sifat-sifat mekanik, reka bentuk eksperimen yang sistematik berdasarkan kaedah gerak balas permukaan (RSM), rekabentuk Box-Behnken (BBD) telah digunakan. Faktor yang dikaji adalah nisbah (wt.%) daripada GO dan nanofibril selulosa (CNF) sebagai bahan tambahan dan minimum berat 5 wt.% sebagai berat minyak pati (EO) telah ditetapkan. Sifat-sifat mekanik yang terdiri daripada kekuatan tegangan, peratus pemanjangan dan modulus Young’s adalah respon yang ditetapkan. Nisbah peratusan berat (wt.%) EO didapati menjadi faktor yang paling penting yang mempengaruhi kekuatan tegangan filem. Dalam kes peratusan pemanjangan (%E), CNF (A) didapati menjadi faktor utama yang mempegaruhi peratus pemanjangan, dimana dalam modulus Young’s, EO wt.% (C) menjadi faktor utama dituruti peratus GO (B). Pengesahan pengoptimuman dijalankan untuk menguji tahap kemampuan respon prognostik keadah gerak balas permukaan. Hasil kajian menunjukkan bahawa pengoptimaan untuk kekuatan mekanikal (kekuatan tegangan, peratus tegangan dan modulus Young's) menyerupai corak yang seperti diramalkan, menunjukkan bahawa pengoptimaan boleh didapati menggunakan RSM.

 

Kata kunci:  gentian nanosellulosa,  grafin oksida, sifat mekanikal, pembungkusan aktif, minyak pati

 

References

1.       Abdul Khalil, H. P. S., Bhat, I. U. H., Jawaid, M., Zaidon, A., Hermawan, D. and Hadi, Y. S. (2012). Bamboo fibre reinforced biocomposites: A review. Materials and Design, 42: 353-368.

2.       Trifol, J., Plackett, D., Sillard, C., Szabo, P., Bras, J. and Daugaard, A. E. (2016). Hybrid poly(lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistance. Polymer International, 65(8): 988-995.

3.       Chan, C. H., Chia, C. H., Zakaria, S., Ahmad, I., Dufresne, A. and Tshai, K. Y. (2014). Low filler content cellulose nanocrystal and graphene oxide reinforced polylactic acid film composites. Polymers Research Journal, 9(1): 165-176.

4.       Del Nobile, M. A., Lucera, A., Costa, C. and Conte, A. (2012). Food applications of natural antimicrobial compounds. Frontiers in Microbiology, 3(287): 1-13.

5.       Silverajah, V. S., Ibrahim, N. A., Zainuddin, N., Yunus, W. M. and Hassan, H. A. (2012). Mechanical, thermal and morphological properties of poly(lactic acid)/epoxidized palm olein blend. Molecules, 17 (10): 11729-47.

6.       Hosseini, M. H., Razavi, S. H. and Mousavi, M. A. (2009). Antimicrobial, physical and mechanical properties of chitosan-based films incorporated with thyme, clove and cinnamon essential oils. Journal of Food Processing and Preservation, 33: 727-743.

7.       Pranoto, Y., Rakshit, S. K. and Salokhe, V. M. (2005). Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. Lebensmittel-Wissenschaft and Technologie, 38(8): 859-865.

8.       Sakurada, I., Nukushina, Y. and Ito, T. (1962). Experimental determination of the elastic modulus of crystalline regions in oriented polymers. Journal of Polymer Science, 57(165): 651-660.

9.       Nishino, T., Matsuda, I. and Hirao, K. (2004). All-cellulose composite. Macromolecules, 37(29): 7683-7687.

10.    Chen, J., Yao, B., Li, C. and Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64: 225-229.

11.    Tao, C. A., Wang, J., Qin, S., Lv, Y., Long, Y., Zhu, H. and Jiang, Z. (2012). Fabrication of pH-sensitive graphene oxide–drug supramolecular hydrogels as controlled release systems. Journal of Materials Chemistry, 22(47): 24856-24861.

12.    Salehudin, M. H., Salleh, E., Muhamad, I. I. and Mamat, S. N. H. (2014). Starch-based biofilm reinforced with empty fruit bunch cellulose nanofibre. Materials Research Innovations, 18(S6): 322- 325.

13.    Arjmandi, R., Hassan, A., Eichhorn, S., Mohamad Haafiz, M. K., Zakaria, Z. and Tanjung, F. (2015). Enhanced ductility and tensile properties of hybrid montmorillonite/cellulose nanowhiskers reinforced polylactic acid nanocomposites. Journal of Materials Science, 50(8): 3118-3130.

14.    Cochran, W. G. and Cox, G. M. (1992). Experimental Designs, 2nd Edition. John Wiley & Sons, Inc, Canada.

15.    Myers, R. H., Montgomery, D. C. and Anderson-Cook, C. M. (2009) Response surface methodology: Process and product optimization using designed experiments. Wiley, Hoboken, New Jersey.

16.    Idris, A., Kormin, F. and Noordin, M. (2006). Application of response surface methodology in describing the performance of thin film composite membrane. Separation and Purification Technology, 49(3): 271-280.

17.    Ammar, A., Al-Enizi, A. M., AlMaadeed, M. A. and Karim, A. (2016). Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes. Arabian Journal of Chemistry, 9(2): 274-286.

18.    Ionita, M., Pandele, A. M., Crica, L. and Pilan, L. (2014). Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide. Composites Part B: Engineering, 59: 133-139.

19.    Lavoine, N., Desloges, I., Dufresne, A., Bras, J. (2012). Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymer, 90(2): 735-64.

20.    Derringer, G. and Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12: 214-219.

 




Previous                    Content                    Next