Malaysian
Journal of Analytical Sciences Vol 22 No 6 (2018): 984 - 998
DOI:
10.17576/mjas-2018-2206-08
EFFECT OF
GRAPHENE OXIDE AND CELLULOSE NANOFIBER TOWARDS MECHANICAL PROPERTIES OF
POLYLACTIC ACID BASED ACTIVE PACKAGING USING RESPONSE SURFACE METHODOLOGY
(Kesan Grafin Oksida dan Gentian Fibril Selulosa Terhadap
Kekuatan Mekanikal Pembungkus Aktif Menggunakan Kaedah Gerak Balas Permukaan)
Mohd Harfiz
Salehudin1 and Ida Idayu Muhamad 1,2*
1Bioprocess and Polymer Engineering Department,
School of Chemical and Energy Engineering, Faculty of Engineering
2Cardiac Biomaterials Cluster, IJN-UTM Cardiovascular
Engineering Center Level 2, Block B, Building V01, School of Biomedical
Engineering & Health Sciences, Faculty of Engineering
Universiti
Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
*Corresponding
author: idaidayu@utm.my
Received: 16
April 2017; Accepted: 18 November 2018
Abstract
A simple preparation of functional
nanoscale graphene oxide (GO) via synthetic
route was done using modified Hummer’s Method whilst cellulose nanofiber from
oil palm empty fruit bunch fiber was prepared using acid hydrolysis method. An
active polylactide based nanocomposite film was prepared by incorporation of
cellulose nanofiber (CNF), graphene oxide (GO) and essential oil (EO). In
determining of factor influences the mechanical properties (tensile strength,
elongation percentage and Young’s modulus), the response surface methodology
(RSM) Box Behnken Design (BBD) were used. The
factors considered were the ratio (wt.%) of GO and CNF as an additive and 5 wt.%
of EO was set as minimum. The mechanical properties that interpreted as tensile
strength, percent elongation and Young’s modulus were the response variables investigated. The ratio of
EO wt.% (C) is found to be the most significant factor that influences the
tensile strength of the nanocomposite. In the case of elongation percentage
(%E) the percentage of cellulose nanofiber CNF (A) gave the most significant
effect, where in Young’s modulus, EO wt.% (C) is the most significant effect,
followed by wt.% of GO (B). Validation of optimization by carrying out the
confirmation run high degree of prognostic ability of response surface
methodology. The results showed that the optimized formulation provided a
mechanical strength (tensile strength, percentage elongation and Young’s
Modulus) pattern that is similar to the predicted curve, which indicated that
the optimal formulation could be obtained using RSM.
Keywords: cellulose nanofiber, graphene oxide,
mechanical properties, active packaging, essential oil
Abstrak
Penyediaan
sintetik serphihan nano grafin oksida telah dilakukan melalui kaedah terubahsuai
Hummer. Selulosa nanofiber dari tandan kelapa sawit telah disediakan dengan
menggunakan kaedah hidrolisis asid. Filem komposit aktif nano polilaktik
disediakan melalui penggabungan selulosa nanofiber, grafin oksida dan minyak
pati. Dalam mengenal pasti faktor nisbah bahan penambah ke atas sifat-sifat
mekanik, reka bentuk eksperimen yang sistematik berdasarkan kaedah gerak balas
permukaan (RSM), rekabentuk Box-Behnken (BBD) telah digunakan. Faktor yang
dikaji adalah nisbah (wt.%) daripada GO dan nanofibril selulosa (CNF) sebagai
bahan tambahan dan minimum berat 5 wt.% sebagai berat minyak pati (EO) telah
ditetapkan. Sifat-sifat mekanik yang terdiri daripada kekuatan tegangan, peratus
pemanjangan dan modulus Young’s adalah respon yang ditetapkan. Nisbah peratusan
berat (wt.%) EO didapati menjadi faktor yang paling penting yang mempengaruhi
kekuatan tegangan filem. Dalam kes peratusan pemanjangan (%E), CNF (A) didapati
menjadi faktor utama yang mempegaruhi peratus pemanjangan, dimana dalam modulus
Young’s, EO wt.% (C) menjadi faktor utama dituruti peratus GO (B). Pengesahan
pengoptimuman dijalankan untuk menguji tahap kemampuan respon prognostik keadah
gerak balas permukaan. Hasil kajian menunjukkan bahawa pengoptimaan untuk
kekuatan mekanikal (kekuatan tegangan, peratus tegangan dan modulus Young's)
menyerupai corak yang seperti diramalkan, menunjukkan bahawa pengoptimaan boleh
didapati menggunakan RSM.
Kata kunci: gentian nanosellulosa,
grafin oksida, sifat mekanikal, pembungkusan aktif, minyak pati
References
1.
Abdul Khalil, H. P. S.,
Bhat, I. U. H., Jawaid, M., Zaidon, A., Hermawan, D. and Hadi, Y. S. (2012).
Bamboo fibre reinforced biocomposites: A review. Materials and Design, 42: 353-368.
2.
Trifol, J., Plackett,
D., Sillard, C., Szabo, P., Bras, J. and Daugaard, A. E. (2016). Hybrid
poly(lactic acid)/nanocellulose/nanoclay composites with synergistically
enhanced barrier properties and improved thermomechanical resistance. Polymer International, 65(8): 988-995.
3.
Chan, C. H., Chia, C.
H., Zakaria, S., Ahmad, I., Dufresne, A. and Tshai, K. Y. (2014). Low filler
content cellulose nanocrystal and graphene oxide reinforced polylactic acid
film composites. Polymers Research
Journal, 9(1): 165-176.
4.
Del Nobile, M. A.,
Lucera, A., Costa, C. and Conte, A. (2012). Food applications of natural
antimicrobial compounds. Frontiers in
Microbiology, 3(287): 1-13.
5.
Silverajah, V. S., Ibrahim,
N. A., Zainuddin, N., Yunus, W. M. and Hassan, H. A. (2012). Mechanical,
thermal and morphological properties of poly(lactic acid)/epoxidized palm olein
blend. Molecules, 17 (10): 11729-47.
6.
Hosseini, M. H.,
Razavi, S. H. and Mousavi, M. A. (2009). Antimicrobial, physical and mechanical
properties of chitosan-based films incorporated with thyme, clove and cinnamon
essential oils. Journal of Food
Processing and Preservation, 33: 727-743.
7.
Pranoto, Y., Rakshit,
S. K. and Salokhe, V. M. (2005). Enhancing antimicrobial activity of chitosan
films by incorporating garlic oil, potassium sorbate and nisin. Lebensmittel-Wissenschaft and Technologie, 38(8):
859-865.
8.
Sakurada, I.,
Nukushina, Y. and Ito, T. (1962). Experimental determination of the elastic
modulus of crystalline regions in oriented polymers. Journal of Polymer Science, 57(165): 651-660.
9.
Nishino, T., Matsuda,
I. and Hirao, K. (2004). All-cellulose composite. Macromolecules, 37(29): 7683-7687.
10.
Chen, J., Yao, B., Li,
C. and Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of
graphene oxide. Carbon, 64: 225-229.
11.
Tao, C. A., Wang, J.,
Qin, S., Lv, Y., Long, Y., Zhu, H. and Jiang, Z. (2012). Fabrication of
pH-sensitive graphene oxide–drug supramolecular hydrogels as controlled release
systems. Journal of Materials Chemistry, 22(47):
24856-24861.
12.
Salehudin, M. H.,
Salleh, E., Muhamad, I. I. and Mamat, S. N. H. (2014). Starch-based biofilm
reinforced with empty fruit bunch cellulose nanofibre. Materials Research Innovations, 18(S6): 322- 325.
13.
Arjmandi, R., Hassan,
A., Eichhorn, S., Mohamad Haafiz, M. K., Zakaria, Z. and Tanjung, F. (2015).
Enhanced ductility and tensile properties of hybrid montmorillonite/cellulose
nanowhiskers reinforced polylactic acid nanocomposites. Journal of Materials Science, 50(8): 3118-3130.
14.
Cochran, W. G. and Cox,
G. M. (1992). Experimental Designs, 2nd Edition. John Wiley &
Sons, Inc, Canada.
15.
Myers, R. H.,
Montgomery, D. C. and Anderson-Cook, C. M. (2009) Response surface methodology:
Process and product optimization using designed experiments. Wiley, Hoboken,
New Jersey.
16.
Idris, A., Kormin, F.
and Noordin, M. (2006). Application of response surface methodology in
describing the performance of thin film composite membrane. Separation and Purification Technology, 49(3):
271-280.
17.
Ammar, A., Al-Enizi, A.
M., AlMaadeed, M. A. and Karim, A. (2016). Influence of graphene oxide on
mechanical, morphological, barrier, and electrical properties of polymer
membranes. Arabian Journal of Chemistry, 9(2):
274-286.
18.
Ionita, M., Pandele, A.
M., Crica, L. and Pilan, L. (2014). Improving the thermal and mechanical
properties of polysulfone by incorporation of graphene oxide. Composites Part B: Engineering, 59: 133-139.
19.
Lavoine, N., Desloges,
I., Dufresne, A., Bras, J. (2012). Microfibrillated cellulose - its barrier
properties and applications in cellulosic materials: A review. Carbohydrate Polymer, 90(2): 735-64.
20.
Derringer, G. and
Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12: 214-219.