Malaysian Journal of Analytical Sciences Vol 23 No 4 (2019): 725 – 735

DOI: 10.17576/mjas-2019-2304-19

 

 

 

SOLUTION CASTING EPOXIDIZED NATURAL RUBBER/POLY(VINYLIDINE FLUORIDE) MEMBRANE FOR PALM OIL EFFLUENT TREATMENT

 

(Pengacuanan Larutan Membran Getah Asli Terepoksida/Poli(Vinilidina Fluorida) untuk Rawatan Efluen Kilang Minyak Sawit)

 

Norliyana Mod, Farah Hannan Anuar, Rizafizah Othaman*

 

School of Chemical Sciences and Food Technology, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  rizafizah@ukm.edu.my

 

 

Received: 31 March 2018; Accepted: 17 April 2019

 

 

Abstract

Poly(vinylidine fluoride) PVDF membrane is generally a chosen membrane for Palm Oil Mill Effluent (POME) treatment. The main focus is to make freestanding and robust PVDF based composite membranes with different ratio of epoxidized natural rubber (ENR) (ENR/PVDF: 0/100 wt.%, 20/80 wt.%, 40/60 wt.%, 60/40 wt.%, 80/20 wt.%, 100/0 wt.%) by solution casting method. Subsequently, these membranes were characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning electron (DSC) and vapor pressure scanning electron microscope (VPSEM). The FTIR spectrums showed that ENR blended well with PVDF and the peak intensity followed the composition of the membranes. Meanwhile, the ENR and PVDF mixtures were miscible due to the formation of single peak glass transition temperature (Tg) as observed in DSC thermogram. Shifting in peaks of Tg suggested important interaction taking place between polymers. Surface morphology by SEM displayed the formation of random pores caused by the nature of PVDF polymer and phase inversion process. High composition of ENR caused a dense membrane and vice-versa while phase inversion contributed to the pores existences. The fluxes during POME treatment were lower than water fluxes. Higher flux was a sign of higher rejection which is efficient for separation of water and effluents. Thus, ENR/PVDF 40/60 wt.% has been selected as promising membranes to be applied for POME treatment.

 

Keywords:  membrane, epoxidised natural rubber, poly(vinylidine fluoride)

 

Abstrak

Membran poli(vinilidina fluoride) PVDF umumnya adalah membran terpilih untuk rawatan efluen kilang minyak sawit (POME). Tumpuan adalah untuk membuat membran komposit berasaskan PVDF yyang fleksibel dan kuat dengan pelbagai nisbah ENR (ER/PVDF: 0/100 wt.%, 20/80 wt.%, 40/60 wt.%, 80/20 wt.%, 100/0 wt.%) dengan kaedah pengacuanan larutan. Selepas itu, membran ini dicirikan menggunakan spektroskopi inframerah transformasi Fourier (FTIR), kalorimeter imbasan pembeza (DSC), mikroskop elektron pengimbasan pelbagai tekanan (VPSEM). Spektrum FTIR menunjukkan bahawa ENR dicampur dengan baik dengan PVDF dan intensiti puncak mengikut komposisi membran. Sementara itu, ENR dan PVDF campuran adalah terlarut campur disebabkan oleh pembentukan puncak tunggal suhu peralihan kaca (Tg) sebagaimana yang berlaku di DSC termogram. Anjakan puncak Tg menandakan berlakunya interaksi antara polimer. Morfologi permukaan oleh SEM menunjukkan pembentukan liang yang rawak hasil daripada sifat polimer PVDF dan proses penyongsangan fasa. Komposisi ENR yang tinggi menyebabkan membran yang padat dan sebaliknya, manakala penyongsangan fasa menyebabkan pembentukan liang. Fluks semasa rawatan POME adalah lebih rendah daripada fluks air. Fluks tinggi adalah tanda penolakan yang lebih tinggi yang cekap untuk pemisahan air dan efluen. Oleh itu, ENR/PVDF 40/60 wt.% telah dipilih sebagai membran yang menyakinkan untuk digunakan bagi rawatan POME.

 

Kata kunci:  membran, getah asli terepoksida, poli(vinilidina fluorida)

 

References

1.       Medeiros, K. M., Araujo, E. M., Lira, H. L., Lima, D. F., Lima, C. A. P. (2017). Hybrid membranes of polyamide applied in treatment of waste water. Material Research, 20(2): 308-316.

2.       Shilton, S. J., Ismail, A. F., Gough, P. J., Dunkin, I. R. and Gallivan, S. L. (1997). Molecular orientation and the performance of synthetic polymeric membranes for gas separation. Polymer, 38(9): 2215-2220.

3.       Bottino, A., Camera-Rodab, G., Capannelli, G. and Munari, S. (1991). The formation of microporous polyvinylidene difluoride membranes by phase separation. Journal of Membrane Science, 57: l-20.

4.       Baker, R. W. (2004). Membrane technology and applications, John Wiley & Sons, Ltd.. 

5.       Yoksan, R. (2008). Epoxidized natural rubber for adhesive applications. Kasetsart Journal (Natural Science), 42: 325-332.

6.       Ismail, H. and Chia, H. H. (1998). The effects of multifunctional additive and epoxidation in silica filled natural rubber compounds. Polymer Testing, 17: 199-210.

7.       Salaeh, S., Nakason, C., Boiteu, G. and Cassagnau, P. (2013). Co-continuous phase structure and properties of poly(vinylidene fluoride)/epoxidized natural rubber blends. Advanced Materials Research, 626: 71-74.

8.       Chinnasa, P., Ponhan, W., Sarasee, P., Phoemphun, Y. and Swatsitang, E. (2016). Electrospun of epoxidized natural rubber with polyvinylpyrrolidone (PVP) composites membrane for PEMFC application. Journal of Science & Technology,Ubon Ratchathani University, 2016: 61-65.

9.       Hasegawa, R., Takahashi, Y., Chatani, Y. and Tadokoro, H. (1972). Crystal structures of three crystalline forms of poly(vinylidine fluoride). Polymer Journal, 3(5): 600-610.

10.    Salaeh, S., Boiteux, G., Gain, O., Cassagnau, P. and Nakason, C. (2014). Dynamic mechanical and dielectric properties of poly(vinylidene fluoride) and epoxidized natural rubber blends. Advanced Materials Research, 844: 97-100.

11.    Tao, M., Liu, F., Ma, B. and Xue, L. (2013). Effect of solvent power on PVDF membrane polymorphism during phase inversion. Desalination, 316: 137-145.

12.    Wang, X., Zhang, L., Sun, D., An, Q. and Chen, H. (2009). Formation mechanism and crystallization of poly(vinylidene fluoride) membrane via immersion precipitation method. Desalination, 236: 170-178

13.    Cao, X., Ma, J., Shi, X. and Ren, Z. (2006). Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Applied Surface Science, 253: 2003-2010.

14.    Freire, E., Bianchi, O., Monteiro, E. E. C., Nunes, R. C. R. and Forte, M. C. (2009). Processability of PVDF/PMMA blends studied by torque rheometry. Materials Science and Engineering C, 29: 657-661.

15.    Wang, P., Tan, K. L., Kangb, E. T. and Neohb, K. G. (2002). Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane. Journal of Membrane Science, 195: 103-114.

16.    Abdullah, I. (2002). Strategi penyelidikan kimia getah asli. Bangi: Penerbit Universiti Kebangsaan Malaysia.

17.    Alim, A. A. A., & Othaman, R. (2018). Epoxidized natural rubber/polyvinyl chloride/microcrystalline cellulose (ENR/PVC/MCC) composite membrane for palm oil mill effluent (POME) treatment. Sains Malaysiana, 47(7):1517-1525.

18.    Shamsuddin, M. R., Abdullah, I., Othaman, R. (2013). Cellulose filled ENR/PVC membranes for palm oil effluent (POME) treatment. AIP Conference Proceedings, 1571: 897.

19.    Igwe, J. C. and Onyegbado, C.C. (2007). A review of palm oil mill effluent (POME) water treatment. Global Journal of Environmental Research 1(2): 54-62.

20.    Malaysia Palm Oil Board (MPOB) (2014). Access from http://www.mpob.gov.my/ms/info-sawit/alam-sekitar/520-achievements.

21.    Chin, K. K., Lee, S. W. and Mohammad, H. H. (1996). A study of palm oil mill effluent treatment using a pond system.  Water Science Technology  34(11): 119-123.

22.    Yan, L., Honga, S., Li, M. L. and Li, Y. S. (2009). Application of the Al2O3–PVDF nanocomposite tubular ultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research. Separation and Purification Technology, 66: 347-352.

23.    Saljoughi, E., Sadrzadeh, M. and Mohammadi, T. (2009). Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes. Journal of Membrane Science, 326: 627-634.

24.    Kassim, M.A., Salim, M. R. and Othman, M. N. (1994). Rawatan kumbahan dalam iklim panas. Skudai: Universiti Teknologi Malaysia.

25.    APHA (2005). Standard methods for the examination of water and wastewater. 21st edition American Public Health Association. Washington, DC.

26.    Zurina, M., Ismail, H. and Bakar, A. A. (2004). Rice husk powder–filled polystyrene/styrene butadiene rubber blends. Journal of Applied Polymer Science, 92: 3320-3332.

27.    Boccaccio, T., Bottino, A., Capannelli, G. and Piaggio, P. (2002). Characterization of PVDF membranes by vibrational spectroscopy. Journal of Membrane Science, 210: 315–329.

28.    Ma, W., Yuan, H. and Wang, X. (2014). The effect of chain structures on the crystallization behavior and membrane formation of poly(vinylidene fluoride) copolymers. Membranes  4:243-256.

29.    Bourara, H., Hadjout, S., Benabdelghani, Z. and Etxeberria, A. (2014). Miscibility and hydrogen bonding in blends of poly(4-vinylphenol)/poly(vinyl methyl ketone). Polymers, 6: 2752-2763.

30.    Bottino, A., Capannelli, G., Munari, S. and Turturro, A. (1988). High performance ultrafiltration membranes cast from LiCI doped solutions. Desalination, 68: 167-177.

 

 




Previous                    Content                    Next