Malaysian
Journal of Analytical Sciences Vol 23 No 5 (2019): 892 - 900
DOI:
10.17576/mjas-2019-2305-14
CHARACTERIZATION
AND CATALYTIC ACTIVITY OF Os/BENTONITE CATALYST FOR HYDROGENOLYSIS OF GLYCEROL
(Pencirian dan Aktiviti Pemangkin Os/Bentonit untuk Tindak
Balas Hidrogenolisis Gliserol)
Noraini Hamzah1*,
Wan Zurina Samad2, Nazrizawati
Ahmad Tajuddin3, Mohd Ambar Yarmo4
1School of Chemistry and Environment, Faculty of
Applied Sciences,
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
2Department of Chemistry, Kulliyah of Sciences,
International Islamic University Malaysia,
25200 Kuantan, Pahang, Malaysia
3Department of Chemistry,
Universiti
Teknologi MARA, Perak Branch, Tapah Campus, 35400 Tapah, Perak, Malaysia
4School of Chemical Science and Food Technology,
Faculty of Science and Technology,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding
author: pnoraini@salam.uitm.edu.my
Received: 13 September 2018;
Accepted: 29 July 2019
Abstract
In this
study, osmium catalysts (Os/Bentonite, Os/TiO2) and ruthenium
catalysts (Ru/Bentonite, Ru/TiO2) with 5% wt/wt metal loading were prepared using impregnation method
and applied to convert glycerol, a renewable feedstock, to value-added
chemical, 1,2-propanediol. Among these catalysts, the bentonite supported Os
catalyst showed high performance with conversion and selectivity to 1,2-propanediol
which were 63.3% and 82.7%, respectively. Catalytic performances of these
catalysts were evaluated in glycerol
hydrogenolysis using stainless steel
autoclave reactor equipped with a magnetic stirrer at 150 °C, hydrogen pressure 20 - 40 bar for
7 hours reaction. The effect of glycerol concentration and reaction temperature
were investigated to obtain optimum conditions due to glycerol conversion and
products selectivity greatly depend on these factors. Experimental results show that hydrogenolysis of glycerol at 160 °C reaction temperature and 5%
glycerol concentration gives a conversion
of glycerol up to 100.0% with 82.9%
selectivity of 1,2-propandiol. This study
showed that bentonite which is cheap and abundant clay is potentially a good
catalyst support material. The Os/bentonite catalyst was characterized by
Temperature Programmed Reduction (TPR), nitrogen adsorption-desorption analysis
(BET), Temperature Programmed Desorption-Ammonia(TPD-NH3) for
obtaining some physicochemical properties of the catalysts.
Keywords: osmium, bentonite, glycerol hydrogenolysis, 1,2-propanediol
Abstrak
Dalam kajian
ini, pemangkin osmium (Os/bentonit, Os/TiO2) dan pemangkin ruthenium
(Ru/bentonite, Ru/TiO2) dengan muatan logam 5% wt/wt disediakan
dengan menggunakan kaedah impregnasi dan diaplikasikan kepada penukaran
gliserol yang merupakan bahan mentah yang boleh diperbaharui kepada bahan kimia
yang bernilai tinggi iaitu 1,2-propanadiol. Antara pemangkin yang dikaji, Os
berpenyokong bentonit menunjukkan sifat pemangkin yang baik dengan nilai
peratus penukaran dan pemilihan masing-masing adalah 63.3% dan 82.7%. Aktiviti
pemangkin diuji dalam tindak balas hidrogenolisi gliserol menggunakan reaktor
autoklaf tahan karat yang dilengkapi dengan pengacau magnetik pada suhu 150 ⁰C, tekanan
hidrogen 20-40 bar selama 7 jam. Kesan kepekatan gliserol dan suhu tindak balas
didapati memberi kesan signifikasi terhadap peratus penukaran gliserol dan
pemilihan produk. Keputusan kajian menunjukkan bahawa keadaan optimum pada suhu
160 ⁰C dan kepekatan gliserol 5% (wt/wt) memberikan penukaran
gliserol sehingga 90.0% dengan peratus pemilihan terhadap 1,2-propanadiol
82.9%. Kajian ini menunjukkan bahawa bentonit yang merupakan tanah liat murah dan mudah didapati adalah berpotensi
digunakan sebagai penyokong mangkin. Pemangkin Os/bentonit dicirikan
menggunakan suhu pemprograman penurunan (TPR), analisis jerapan-nyahjerapan
nitrogen (BET), suhu pemprograman nyahjerapan ammonia (TPD-NH3) bagi
mendapatkan maklumat mengenai sifat fizikal dan kimia pemangkin.
Kata kunci: osmium, bentonit, hidrogenolisis gliserol,
1,2-propanadiol
References
1.
Huang, Z., Cui, F.,
Kang, H., Chen, J. and Xia, C. (2009). Characterization and catalytic
properties of the CuO/SiO2
catalysts prepared by precipitation-gel method in the hydrogenolysis of
glycerol to 1,2-propanediol: effect of residual sodium. Applied Catalysis A: General, 366(2): 288-298.
2.
Vasiliadou,
E. S., Heracleous, E., Vasalos, I. A. and
Lemonidou, A. A. (2009). Ru-based
catalysts for glycerol hydrogenolysis-effect of support and metal
precursor. Applied Catalysis B: Environmental, 92 (1-2): 90-99.
3.
Feng, J., Fu, H., Wang, J., Li, R., Chen, H. and Li, X.
(2008). Hydrogenolysis of glycerol to glycols over ruthenium catalysts: Effect
of support and catalyst reduction temperature. Journal of Catalysis Communications, 9(6): 1458-1464.
4.
Jiang,
T., Zhou, Y., Liang, S., Liu, H. and Han, B. (2009). Hydrogenolysis of glycerol
catalyzed by Ru-Cu bimetallic catalysts supported on clay with the aid of ionic
liquids. Green Chemistry, 11(7):
1000-1006.
5.
Chaminand,
J., Djakovitch, L., Gallezot, P., Marion, P., Pinel, C. and Rosierb, C. (2004).
Glycerol hydrogenolysis on heterogeneous catalysts. Green
Chemistry, 6: 359-361.
6.
Maris,
E. P., Ketchie, W. C., Murayama, M. and Davis, R. J. (2007). Glycerol
hydrogenolysis on carbon-supported Pt-Ru and Au-Ru bimetallic catalysts. Journal of Catalysis, 251(2): 281-294.
7.
Shinmi,
Y., Koso, S., Kubota, T., Nakagawa, Y.
and Tomishige, K. (2010). Modification of Rh/SiO2 catalyst for the
hydrogenolysis of glycerol in water. Applied Catalysis B: Environmental,
94(3-4): 318-326.
8.
Wang,
S. and Liu, H. (2007). Selective hydrogenolysis of glycerol to propylene glycol
on Cu-ZnO catalysts. Catalysis Letters, 117(1-2): 62-67.
9.
Yu,
W., Zhao, J., Ma, H., Miao, H., Song, Q. and Xu, J. (2010). Aqueous
hydrogenolysis of glycerol over Ni-Ce/Ac catalyst: Promoting effect of Ce on
catalytic performance. Applied Catalysis
A: General, 383(1-2): 73-78.
10.
Zheng,
J., Zhu, W. C., Ma, C. X., Jia, M. J., Wang, Z. L., Hou, Y. H. and Zhang, W. X.
(2009). Hydrogenolysis of glycerol to
1,2-propanediol over Cu/SiO2 catalysts prepared by ion-exchange
method. Polish Journal of Chemistry, 83(7): 1379-1387.
11.
Zhou,
J., Zhang, J., Guo, X., Mao, J. and Zhang, S. (2012). Ag/Al2O3 for
glycerol hydrogenolysis to 1,2-propanediol: activity, selectivity and
deactivation. Green Chemistry, 14(1): 156-163.
12.
Basit,
A., Suzana, Y., Armando T. Q., Ruzaimah, N. M. K., Yoshifumi S., Muhammad A.,
Tetsuya K. (2016). Pretreatment and bentonite-based catalyzed conversion of
palm-rubber seed oil blends to biodiesel.
Procedia Engineering, (148): 501-507.
13.
Banu,
M., Sivasanker, S., Sankaranarayanan, T. M. and Venuvanalingam, P. (2011).
Hydrogenolysis of sorbitol over Ni and Pt loaded on nay. Catalysis Communications, 12(7): 673-677.
14.
Kwak,
B. K., Park, D. S., Yun, Y. S. and Yi, J. (2012). Preparation and
characterization of nanocrytalline CuAl2O4 spinel
catalysts by sol-gel method for the hydrogenolysis of glycerol. Catalyst Communications, 24: 90-95.
15.
Montassier,
C., Ménézo, J. C., Hoang, L. C., Renaud, C. and Barbier, J. (1991). Aqueous
polyol conversions on ruthenium and on sulfur-modified ruthenium. Journal
of Molecular Catalysis, 70(1): 99-110.
16.
Shinmi,
Y., Koso, S., Kubota, T., Nakagawa, Y. and Tomishige, K. (2010). Modification
of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in
water. Applied Catalysis B: Environmental, 94(3-4): 318-326.
17.
Miyazawa,
T., Koso, S., Kunimori, K. and Tomishige, K. (2007). Development of a Ru/C
catalyst for glycerol hydrogenolysis in combination with an ion-exchange resin.
Journal of Applied Catalysis A: General,
318: 244-251.
18.
Miyazawa,
T., Kunimori, K. and Tomishige, K. (2006). Glycerol hydrogenolysis in the
aqueous solution under hydrogen over Ru/C+ an ion-exchange resin and
its reaction mechanism. Journal of Catalysis, 240(240): 213-221.
19.
Maris,
E. P. and Davis, R. J. (2007).
Hydrogenolysis of glycerol over carbon-supported Ru and Pt
catalysts. Journal of Catalysis, 249(2): 328-337.
20.
Lahr,
D. G. and Shanks, B. H. (2003). Kinetic analysis of the hydrogenolysis of lower
polyhydric alcohols: Glycerol to glycols. Industrial
and Engineering Chemistry Research, 42(22): 5467-5472.
21.
Zheng,
J., Zhu, W., Ma, C., Hou, Y., Zhang, W. and Wang, Z. (2010). Hydrogenolysis of
glycerol to 1,2-propanediol on the high dispersed Sba-15 supported copper
catalyst prepared by the ion-exchange method.
Reaction Kinetics, Mechanisms and
Catalysis, 99(2): 455-462.
22.
Zhou,
Z., Li, X., Zeng, T., Hong, W., Cheng, Z. and Yuan, W. (2010). Kinetics of
hydrogenolysis of glycerol to propylene glycol over Cu-ZnO-Al2O3
catalysts. Chinese Journal of Chemical Engineering, 18(3): 384-390.
23.
Ma,
L., He, D. and Li, Z. (2008). Promoting effect of rhenium on catalytic
performance of Ru catalysts in hydrogenolysis of glycerol to propanediol. Catalysis Communications, 9(15):
2489-2495.
24.
Jiménez-Morales,
I., Vila, F., Mariscal, R. and Jiménez-López, A. (2012). Hydrogenolysis of glycerol to obtain
1,2-propanediol on Ce-promoted Ni/Sba-15 catalysts. Applied Catalysis B: Environmental, 117-118(1): 253-259.