Malaysian Journal of Analytical Sciences Vol 23 No 5 (2019): 892 - 900

DOI: 10.17576/mjas-2019-2305-14

 

 

 

CHARACTERIZATION AND CATALYTIC ACTIVITY OF Os/BENTONITE CATALYST FOR HYDROGENOLYSIS OF GLYCEROL

 

(Pencirian dan Aktiviti Pemangkin Os/Bentonit untuk Tindak Balas Hidrogenolisis Gliserol)

 

Noraini Hamzah1*, Wan Zurina Samad2, Nazrizawati Ahmad Tajuddin3, Mohd Ambar Yarmo4

 

1School of Chemistry and Environment, Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Department of Chemistry, Kulliyah of Sciences,

 International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

3Department of Chemistry,

Universiti Teknologi MARA, Perak Branch, Tapah Campus, 35400 Tapah, Perak, Malaysia 

4School of Chemical Science and Food Technology, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  pnoraini@salam.uitm.edu.my

 

 

Received: 13 September 2018; Accepted: 29 July 2019

 

 

Abstract

In this study, osmium catalysts (Os/Bentonite, Os/TiO2) and ruthenium catalysts (Ru/Bentonite, Ru/TiO2) with 5% wt/wt metal loading were prepared using impregnation method and applied to convert glycerol, a renewable feedstock, to value-added chemical, 1,2-propanediol. Among these catalysts, the bentonite supported Os catalyst showed high performance with conversion and selectivity to 1,2-propanediol which were 63.3% and 82.7%, respectively. Catalytic performances of these catalysts were evaluated in glycerol hydrogenolysis using stainless steel autoclave reactor equipped with a magnetic stirrer at 150 °C, hydrogen pressure 20 - 40 bar for 7 hours reaction. The effect of glycerol concentration and reaction temperature were investigated to obtain optimum conditions due to glycerol conversion and products selectivity greatly depend on these factors. Experimental results show that hydrogenolysis of glycerol at 160 °C reaction temperature and 5% glycerol concentration gives a conversion of glycerol up to 100.0% with 82.9% selectivity of 1,2-propandiol. This study showed that bentonite which is cheap and abundant clay is potentially a good catalyst support material. The Os/bentonite catalyst was characterized by Temperature Programmed Reduction (TPR), nitrogen adsorption-desorption analysis (BET), Temperature Programmed Desorption-Ammonia(TPD-NH3) for obtaining some physicochemical properties of the catalysts.

 

Keywords:  osmium, bentonite, glycerol hydrogenolysis, 1,2-propanediol

 

Abstrak

Dalam kajian ini, pemangkin osmium (Os/bentonit, Os/TiO2) dan pemangkin ruthenium (Ru/bentonite, Ru/TiO2) dengan muatan logam 5% wt/wt disediakan dengan menggunakan kaedah impregnasi dan diaplikasikan kepada penukaran gliserol yang merupakan bahan mentah yang boleh diperbaharui kepada bahan kimia yang bernilai tinggi iaitu 1,2-propanadiol. Antara pemangkin yang dikaji, Os berpenyokong bentonit menunjukkan sifat pemangkin yang baik dengan nilai peratus penukaran dan pemilihan masing-masing adalah 63.3% dan 82.7%. Aktiviti pemangkin diuji dalam tindak balas hidrogenolisi gliserol menggunakan reaktor autoklaf tahan karat yang dilengkapi dengan pengacau magnetik pada suhu 150 C, tekanan hidrogen 20-40 bar selama 7 jam. Kesan kepekatan gliserol dan suhu tindak balas didapati memberi kesan signifikasi terhadap peratus penukaran gliserol dan pemilihan produk. Keputusan kajian menunjukkan bahawa keadaan optimum pada suhu 160 C dan kepekatan gliserol 5% (wt/wt) memberikan penukaran gliserol sehingga 90.0% dengan peratus pemilihan terhadap 1,2-propanadiol 82.9%. Kajian ini menunjukkan bahawa bentonit yang merupakan tanah liat  murah dan mudah didapati adalah berpotensi digunakan sebagai penyokong mangkin. Pemangkin Os/bentonit dicirikan menggunakan suhu pemprograman penurunan (TPR), analisis jerapan-nyahjerapan nitrogen (BET), suhu pemprograman nyahjerapan ammonia (TPD-NH3) bagi mendapatkan maklumat mengenai sifat fizikal dan kimia pemangkin.

 

Kata kunci:  osmium, bentonit, hidrogenolisis gliserol, 1,2-propanadiol

 

References

1.       Huang, Z., Cui, F., Kang, H., Chen, J. and Xia, C. (2009). Characterization and catalytic properties of the CuO/SiO2 catalysts prepared by precipitation-gel method in the hydrogenolysis of glycerol to 1,2-propanediol: effect of residual sodium. Applied Catalysis A: General, 366(2): 288-298.

2.       Vasiliadou, E. S., Heracleous, E., Vasalos, I. A. and Lemonidou, A. A. (2009). Ru-based catalysts for glycerol hydrogenolysis-effect of support and metal precursor.  Applied Catalysis B: Environmental, 92 (1-2): 90-99.

3.       Feng, J., Fu, H., Wang, J., Li, R., Chen, H. and Li, X. (2008). Hydrogenolysis of glycerol to glycols over ruthenium catalysts: Effect of support and catalyst reduction temperature. Journal of Catalysis Communications, 9(6): 1458-1464.

4.       Jiang, T., Zhou, Y., Liang, S., Liu, H. and Han, B. (2009). Hydrogenolysis of glycerol catalyzed by Ru-Cu bimetallic catalysts supported on clay with the aid of ionic liquids. Green Chemistry, 11(7): 1000-1006.

5.       Chaminand, J., Djakovitch, L., Gallezot, P., Marion, P., Pinel, C. and Rosierb, C. (2004). Glycerol hydrogenolysis on heterogeneous catalysts.  Green Chemistry, 6: 359-361.

6.       Maris, E. P., Ketchie, W. C., Murayama, M. and Davis, R. J. (2007). Glycerol hydrogenolysis on carbon-supported Pt-Ru and Au-Ru bimetallic catalysts. Journal of Catalysis, 251(2): 281-294.

7.       Shinmi, Y., Koso, S., Kubota, T., Nakagawa, Y. and Tomishige, K. (2010). Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water.  Applied Catalysis B: Environmental, 94(3-4): 318-326.

8.       Wang, S. and Liu, H. (2007). Selective hydrogenolysis of glycerol to propylene glycol on Cu-ZnO catalysts. Catalysis Letters, 117(1-2): 62-67.

9.       Yu, W., Zhao, J., Ma, H., Miao, H., Song, Q. and Xu, J. (2010). Aqueous hydrogenolysis of glycerol over Ni-Ce/Ac catalyst: Promoting effect of Ce on catalytic performance. Applied Catalysis A: General, 383(1-2): 73-78.

10.    Zheng, J., Zhu, W. C., Ma, C. X., Jia, M. J., Wang, Z. L., Hou, Y. H. and Zhang, W. X. (2009).   Hydrogenolysis of glycerol to 1,2-propanediol over Cu/SiO2 catalysts prepared by ion-exchange method.  Polish Journal of Chemistry, 83(7): 1379-1387.

11.    Zhou, J., Zhang, J., Guo, X., Mao, J. and Zhang, S. (2012). Ag/Al2O3 for glycerol hydrogenolysis to 1,2-propanediol: activity, selectivity and deactivation.  Green Chemistry, 14(1): 156-163.

12.    Basit, A., Suzana, Y., Armando T. Q., Ruzaimah, N. M. K., Yoshifumi S., Muhammad A., Tetsuya K. (2016). Pretreatment and bentonite-based catalyzed conversion of palm-rubber seed oil blends to biodiesel. Procedia Engineering, (148): 501-507.

13.    Banu, M., Sivasanker, S., Sankaranarayanan, T. M. and Venuvanalingam, P. (2011). Hydrogenolysis of sorbitol over Ni and Pt loaded on nay. Catalysis Communications, 12(7): 673-677.

14.    Kwak, B. K., Park, D. S., Yun, Y. S. and Yi, J. (2012). Preparation and characterization of nanocrytalline CuAl2O4 spinel catalysts by sol-gel method for the hydrogenolysis of glycerol. Catalyst Communications, 24: 90-95.

15.    Montassier, C., Ménézo, J. C., Hoang, L. C., Renaud, C. and Barbier, J. (1991). Aqueous polyol conversions on ruthenium and on sulfur-modified ruthenium.  Journal of Molecular Catalysis, 70(1): 99-110.

16.    Shinmi, Y., Koso, S., Kubota, T., Nakagawa, Y. and Tomishige, K. (2010). Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water.  Applied Catalysis B: Environmental, 94(3-4): 318-326.

17.    Miyazawa, T., Koso, S., Kunimori, K. and Tomishige, K. (2007). Development of a Ru/C catalyst for glycerol hydrogenolysis in combination with an ion-exchange resin. Journal of Applied Catalysis A: General, 318: 244-251.

18.    Miyazawa, T., Kunimori, K. and Tomishige, K. (2006). Glycerol hydrogenolysis in the aqueous solution under hydrogen over Ru/C+ an ion-exchange resin and its reaction mechanism.  Journal of Catalysis, 240(240): 213-221.

19.    Maris, E. P. and Davis, R. J. (2007).  Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts.  Journal of Catalysis, 249(2): 328-337.

20.    Lahr, D. G. and Shanks, B. H. (2003). Kinetic analysis of the hydrogenolysis of lower polyhydric alcohols: Glycerol to glycols. Industrial and Engineering Chemistry Research, 42(22): 5467-5472.

21.    Zheng, J., Zhu, W., Ma, C., Hou, Y., Zhang, W. and Wang, Z. (2010). Hydrogenolysis of glycerol to 1,2-propanediol on the high dispersed Sba-15 supported copper catalyst prepared by the ion-exchange method.  Reaction Kinetics, Mechanisms and Catalysis, 99(2): 455-462.

 

22.    Zhou, Z., Li, X., Zeng, T., Hong, W., Cheng, Z. and Yuan, W. (2010). Kinetics of hydrogenolysis of glycerol to propylene glycol over Cu-ZnO-Al2O3 catalysts.  Chinese Journal of Chemical Engineering, 18(3): 384-390.

23.    Ma, L., He, D. and Li, Z. (2008). Promoting effect of rhenium on catalytic performance of Ru catalysts in hydrogenolysis of glycerol to propanediol. Catalysis Communications, 9(15): 2489-2495.

24.    Jiménez-Morales, I., Vila, F., Mariscal, R. and Jiménez-López, A. (2012).   Hydrogenolysis of glycerol to obtain 1,2-propanediol on Ce-promoted Ni/Sba-15 catalysts. Applied Catalysis B: Environmental, 117-118(1): 253-259.

 

 

 

 

 

 




Previous                    Content                    Next