Malaysian Journal of Analytical Sciences Vol 23 No 5 (2019): 789 - 798

DOI: 10.17576/mjas-2019-2305-04

 

 

 

SPECTROSCOPIC STUDIES OF INCLUSION COMPLEX GLIPIZIDE AND β-CYCLODEXTRIN

 

(Kajian Spektroskopik Kompleks Kemasukan Glipizida dan β-siklodekstrin)

 

Nurul Yani Rahim*, Fatin Hamizah Samad, Asmaa’ Mardhiah Rohisham

 

School of Chemical Sciences,

Universiti Sains Malaysia,

11800 Gelugor, Pulau Pinang, Malaysia

 

*Corresponding author:  nurulyanirahim@usm.my

 

 

Received: 8 May 2019; Accepted: 3 September 2019

 

 

Abstract

The complex between hypoglycemic drug, glipizide, and β-cyclodextrin (β-CD) was prepared using the kneading method with aliquot addition of ethanol. The product was characterized using Fourier Transform Infrared (FTIR) spectrometer and Thermogravimetric Analysis (TGA). 1H and NOESY Nuclear Magnetic Resonance (NMR) and UV-Vis spectroscopy were used to determine the interaction involved in the formation of inclusion complex β-CD/glipizide. 1H and NOESY NMR results indicated that the hydrophobic interaction occurred between glipizide and β-CD. The formation constant values of complex β-CD/glipizide at pH 9 and 4 were close to each other. The stoichiometry ratio for the inclusion complex between β-CD with glipizide was 1:1.

 

Keywords:  β-CD, antidiabetic drug, formation constant, cavity, kneading

 

Abstrak

Kompleks antara ubat hipoglisemia, glipizida, dan β-siklodekstrin (β-CD) telah disediakan dengan cara menguli bersama penambahan etanol alikuot. Produk ini dicirikan menggunakan spektrometer inframerah transformasi Fourier (FTIR) dan analisis termogravimetrik (TGA). Resonan Magnetik Nuklear (NMR) 1H dan NOESY dan spektroskopi UV-Vis telah digunakan untuk menentukan interaksi yang terlibat dalam pembentukan kompleks kemasukan β-CD/glipizida. Hasil NMR 1H dan NOESY menunjukkan bahawa interaksi hidrofobik berlaku antara glipizida dan β-CD. Nilai pemalar pembentukan kompleks β-CD/glipizida pada pH 9 dan 4 adalah lebih kurang sama. Nisbah stoikiometri untuk kompleks kemasukan antara β-CD dan glipizida ialah 1: 1

 

Kata kunci:  β-CD, ubat antidiabetik, pemalar pembentukan, kaviti, menguli

 

References

1.       Bender, M. L. and Komiyama, M. (2012). Cyclodextrin chemistry. Springer Berlin Heidelberg, New         York: pp. 2 – 3.

2.       Abarca, R. L., Rodriguez, F. J., Guarda, A., Galotto, M. J. and Bruna, J. E. (2016). Characterization of beta- cyclodextrin inclusion complexes containing an essential oil component. Food Chemistry, 196: 968 – 975.

3.       Zhu, X., Sun, J. and Wu, J. (2007). Study on the inclusion interactions of β-cyclodextrin and its derivative with dyes by spectrofluorimetry and its analytical application. Talanta, 72(1): 237 − 242.

4.       de Paula, E., Cereda, C., Tofoli, G. R., Franz-Montan, M., Fraceto, L. F. and de Araújo, D. R. (2010). Drug delivery systems for local anesthetics. Recent Patents on Drug Delivery & Formulation, 4(1): 23 − 34.

5.       Loftsson, T. and Duchene, D. (2007). Cyclodextrins and their pharmaceutical applications. International Journal of Pharmaceutics, 329(1-2): 1 − 11.

6.       Machelart, A., Salzano, G., Li, X., Demars, A., Debrie, A. S., Menendez-Miranda, M., and Belhaouane, I. (2019). Intrinsic antibacterial activity of nanoparticles made of β-cyclodextrins potentiates their effect as drug nanocarriers against tuberculosis. ACS Nano, 13(4): 3992 − 4007.

7.       Rasheed, A. (2008). Cyclodextrins as drug carrier molecule: A review. Scientia Pharmaceutica, 76(4):    567 − 598.

8.       Crini, G., Fourmentin, S., Fenyvesi, E., Torri, G., Fourmentin, M. and Morin-Crini, N. (2018). Cyclodextrin fundamentals, reactivity and analysis. Springer Cham, Besancon: pp. 1 – 55.

9.       Stella, V. J. and He, Q. (2008). Cyclodextrins. Toxicologic Pathology, 36(1): 30 − 42.

10.    Bui, T. T., Ngo, D. Q., Tran, V. L., Nguyen, T. N. and Do, T. T. (2019). Acute and subacute toxic study on mice of glipizide synthesized in Vietnam. Vietnam Journal of Science and Technology, 57(1): 15 − 21.

11.    Tan, B., Yang, A., Yuan, W., Li, Y., Jiang, L., Jiang, J., and Qiu, F. (2017). Simultaneous determination of glipizide and its four hydroxylated metabolites in human urine using LC–MS/MS and its application in urinary phenotype study. Journal of Pharmaceutical and Biomedical Analysis, 139: 179 − 186.

12.    Nie, S., Zhang, S., Pan, W. and Liu, Y. (2011). In vitro and in vivo studies on the complexes of glipizide with water-soluble β-cyclodextrin–epichlorohydrin polymers. Drug Development and Industrial Pharmacy, 37(5): 606 − 612.

13.    Huang, T., Zhao, Q., Su, Y. and Ouyang, D. (2018). Investigation of molecular aggregation mechanism of glipizide/cyclodextrin complexation by combined experimental and molecular modeling approaches. Asian Journal of Pharmaceutical Sciences (Article in Press).

14.    Gan, Y., Pan, W., Wei, M. and Zhang, R. (2002). Cyclodextrin Complex Osmotic Tablet for Glipizide Delivery. Drug Development and Industrial Pharmacy, 28 (8): 1015 − 1021.

15.    Chadha, R., Arora, P., Saini, A. and Jain, D. (2010). Inclusion parameters of pioglitazone hydrochloride and glipizide with β-cyclodextrin and its methyl derivative: Calorimetric and spectroscopic studies. International Journal of Biological and Chemical Sciences, 4(2): 258 − 273.

16.    Ammar, H. O., Salama, H. A., Ghorab, M., El-Nahhas, S. A. and Elmotasem, H. (2006). A transdermal delivery system for glipizide. Current Drug Delivery, 33(3): 333 − 341.

17.    Huang, H., Wu, Z., Qi, X., Zhang, H., Chen, Q., Xing, J., and Rui, Y. (2013). Compression-coated tablets of glipizide using hydroxypropylcellulose for zero-order release: in vitro and in vivo evaluation. International Journal of Pharmaceutics, 446(1-2): 211 − 218.

18.    Gidwani, B. and Vyas, A. (2014). Synthesis, characterization and application of epichlorohydrin-β-cyclodextrin polymer. Colloids and Surfaces B: Biointerfaces, 114: 130 – 137.

19.    Rahim, N. Y., Tay, K. S. and Mohamad, S. (2016). β-cyclodextrin functionalized ionic liquid as chiral stationary phase of high performance liquid chromatography for enantioseparation of β-blockers. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 85(3-4): 303 − 315.

20.    Rahim, N. Y., Tay, K. S. and Mohamad, S. (2016). Chromatographic and spectroscopic studies on β-cyclodextrin functionalized ionic liquid as chiral stationary phase: enantioseparation of favonoids. Chromatographia, 79(21-22): 1445 − 1455.

21.    Li, N., Liu, J., Zhao, X., Gao, Y. A., Zheng, L., Zhang, J. and Yu, L. (2007). Complex formation of ionic liquid surfactant and β-cyclodextrin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292(2-3): 196 − 201.

22.    Li, W., Lu, B., Sheng, A., Yang, F. and Wang, Z. (2010). Spectroscopic and theoretical study on inclusion complexation of beta-cyclodextrin with permethrin. Journal of Molecular Structure, 981(1-3): 194 – 203.

23.    Li, J., Ni, X., Zhou, Z. and Leong, K. W. (2003). Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly (propylene oxide)-poly (ethylene oxide)-poly (propylene oxide) triblock copolymers and α-cyclodextrin. Journal of the American Chemical Society, 125(7), 1788 − 1795.

24.    Rusa, C. C., Luca, C. and Tonelli, A. E. (2001). Polymer-cyclodextrin inclusion compounds: Toward new aspects of their inclusion mechanism. Macromolecules, 34(5): 1318 − 1322.

25.    Rahim, N. Y., Tay, K. S. and Mohamad, S. (2018). Chromatographic and spectroscopic studies on β-cyclodextrin functionalized ionic liquid as chiral stationary phase: enantioseparation of NSAIDs. Adsorption Science & Technology, 36(1-2): 130 − 148.

 

 




Previous                    Content                    Next