Malaysian
Journal of Analytical Sciences Vol 23 No 5 (2019): 789 - 798
DOI:
10.17576/mjas-2019-2305-04
SPECTROSCOPIC STUDIES OF
INCLUSION COMPLEX GLIPIZIDE AND β-CYCLODEXTRIN
(Kajian Spektroskopik Kompleks Kemasukan Glipizida
dan β-siklodekstrin)
Nurul Yani Rahim*,
Fatin Hamizah Samad, Asmaa’ Mardhiah Rohisham
School of
Chemical Sciences,
Universiti Sains
Malaysia,
11800 Gelugor,
Pulau Pinang, Malaysia
*Corresponding
author: nurulyanirahim@usm.my
Received: 8 May 2019; Accepted: 3 September 2019
Abstract
The
complex between hypoglycemic drug, glipizide, and β-cyclodextrin (β-CD) was
prepared using the kneading method with aliquot addition of ethanol. The
product was characterized using Fourier Transform Infrared (FTIR) spectrometer
and Thermogravimetric Analysis (TGA). 1H and NOESY Nuclear Magnetic
Resonance (NMR) and UV-Vis spectroscopy were used to determine the interaction
involved in the formation of inclusion complex β-CD/glipizide. 1H
and NOESY NMR results indicated that the hydrophobic interaction occurred
between glipizide and β-CD. The formation constant values of complex
β-CD/glipizide at pH 9 and 4 were close to each other. The stoichiometry ratio
for the inclusion complex between β-CD with glipizide was 1:1.
Keywords: β-CD, antidiabetic drug, formation constant,
cavity, kneading
Abstrak
Kompleks
antara ubat hipoglisemia, glipizida, dan β-siklodekstrin (β-CD) telah
disediakan dengan cara menguli bersama penambahan etanol alikuot. Produk ini
dicirikan menggunakan spektrometer inframerah transformasi Fourier (FTIR) dan analisis termogravimetrik (TGA).
Resonan Magnetik Nuklear (NMR) 1H dan NOESY dan spektroskopi UV-Vis
telah digunakan untuk menentukan interaksi yang terlibat dalam pembentukan
kompleks kemasukan β-CD/glipizida. Hasil NMR 1H dan NOESY
menunjukkan bahawa interaksi hidrofobik berlaku antara glipizida dan β-CD.
Nilai pemalar pembentukan kompleks β-CD/glipizida pada pH 9 dan 4 adalah lebih
kurang sama. Nisbah stoikiometri untuk kompleks kemasukan antara β-CD dan
glipizida ialah 1: 1
Kata kunci: β-CD, ubat antidiabetik, pemalar pembentukan, kaviti, menguli
References
1.
Bender, M. L. and Komiyama, M. (2012). Cyclodextrin
chemistry. Springer Berlin Heidelberg, New York: pp. 2 – 3.
2.
Abarca, R. L., Rodriguez, F. J., Guarda, A., Galotto, M. J.
and Bruna, J. E. (2016). Characterization of beta- cyclodextrin inclusion
complexes containing an essential oil component. Food Chemistry, 196:
968 – 975.
3.
Zhu, X., Sun, J. and Wu, J. (2007). Study on the inclusion
interactions of β-cyclodextrin and its derivative with dyes by
spectrofluorimetry and its analytical application. Talanta, 72(1):
237 − 242.
4.
de Paula, E., Cereda, C., Tofoli, G. R., Franz-Montan, M.,
Fraceto, L. F. and de Araújo, D. R. (2010). Drug delivery systems for local
anesthetics. Recent Patents on Drug Delivery & Formulation, 4(1):
23 − 34.
5.
Loftsson, T. and Duchene, D. (2007). Cyclodextrins and their
pharmaceutical applications. International Journal of Pharmaceutics, 329(1-2):
1 − 11.
6.
Machelart, A., Salzano, G., Li, X., Demars, A., Debrie, A. S.,
Menendez-Miranda, M., and Belhaouane, I. (2019). Intrinsic antibacterial
activity of nanoparticles made of β-cyclodextrins potentiates their effect as
drug nanocarriers against tuberculosis. ACS Nano, 13(4): 3992 − 4007.
7.
Rasheed, A. (2008). Cyclodextrins as drug carrier molecule: A
review. Scientia Pharmaceutica, 76(4): 567 − 598.
8.
Crini,
G., Fourmentin, S., Fenyvesi, E., Torri, G., Fourmentin, M. and Morin-Crini, N.
(2018). Cyclodextrin fundamentals, reactivity and analysis. Springer Cham,
Besancon: pp. 1 – 55.
9.
Stella, V. J. and He, Q. (2008). Cyclodextrins. Toxicologic
Pathology, 36(1): 30 − 42.
10.
Bui, T. T., Ngo, D. Q., Tran, V. L., Nguyen, T. N. and Do, T.
T. (2019). Acute and subacute toxic study on mice of glipizide synthesized in Vietnam. Vietnam
Journal of Science and Technology, 57(1): 15 − 21.
11.
Tan, B., Yang, A., Yuan, W., Li, Y., Jiang, L., Jiang, J., and Qiu, F.
(2017). Simultaneous determination of glipizide and its four hydroxylated
metabolites in human urine using LC–MS/MS and its application in urinary
phenotype study. Journal of Pharmaceutical and Biomedical Analysis, 139:
179 − 186.
12.
Nie, S., Zhang, S., Pan, W. and Liu, Y. (2011). In vitro and
in vivo studies on the complexes of glipizide with water-soluble
β-cyclodextrin–epichlorohydrin polymers. Drug Development and
Industrial Pharmacy, 37(5): 606 − 612.
13.
Huang, T., Zhao, Q., Su, Y. and Ouyang, D. (2018).
Investigation of molecular aggregation mechanism of glipizide/cyclodextrin
complexation by combined experimental and molecular modeling approaches. Asian
Journal of Pharmaceutical Sciences (Article in Press).
14.
Gan, Y., Pan, W., Wei, M. and Zhang, R. (2002). Cyclodextrin
Complex Osmotic Tablet for Glipizide Delivery. Drug Development and
Industrial Pharmacy, 28 (8): 1015 − 1021.
15.
Chadha, R., Arora, P., Saini, A. and Jain, D. (2010).
Inclusion parameters of pioglitazone hydrochloride and glipizide with
β-cyclodextrin and its methyl derivative: Calorimetric and spectroscopic
studies. International Journal of Biological and Chemical Sciences, 4(2):
258 − 273.
16.
Ammar, H. O., Salama, H. A., Ghorab, M., El-Nahhas, S. A. and
Elmotasem, H. (2006). A transdermal delivery system for glipizide. Current
Drug Delivery, 33(3): 333 − 341.
17.
Huang, H., Wu, Z., Qi, X., Zhang, H., Chen, Q., Xing, J., and
Rui, Y. (2013). Compression-coated tablets of glipizide using
hydroxypropylcellulose for zero-order release: in vitro and in vivo
evaluation. International Journal of Pharmaceutics, 446(1-2):
211 − 218.
18.
Gidwani, B. and Vyas, A. (2014). Synthesis, characterization
and application of epichlorohydrin-β-cyclodextrin polymer. Colloids and
Surfaces B: Biointerfaces, 114: 130 – 137.
19.
Rahim, N. Y., Tay, K. S. and Mohamad, S. (2016). β-cyclodextrin
functionalized ionic liquid as chiral stationary phase of high performance
liquid chromatography for enantioseparation of β-blockers. Journal of
Inclusion Phenomena and Macrocyclic Chemistry, 85(3-4): 303 − 315.
20.
Rahim, N. Y., Tay, K. S. and Mohamad, S. (2016).
Chromatographic and spectroscopic studies on β-cyclodextrin functionalized
ionic liquid as chiral stationary phase: enantioseparation of favonoids. Chromatographia, 79(21-22):
1445 − 1455.
21.
Li, N., Liu, J., Zhao, X., Gao, Y. A., Zheng, L., Zhang, J.
and Yu, L. (2007). Complex formation of ionic liquid surfactant and
β-cyclodextrin. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 292(2-3): 196 − 201.
22.
Li, W., Lu, B., Sheng, A., Yang, F. and Wang, Z. (2010).
Spectroscopic and theoretical study on inclusion complexation of
beta-cyclodextrin with permethrin. Journal of Molecular Structure, 981(1-3):
194 – 203.
23.
Li, J., Ni, X., Zhou, Z. and Leong, K. W. (2003). Preparation
and characterization of polypseudorotaxanes based on block-selected inclusion
complexation between poly (propylene oxide)-poly (ethylene oxide)-poly
(propylene oxide) triblock copolymers and α-cyclodextrin. Journal of
the American Chemical Society, 125(7), 1788 − 1795.
24.
Rusa, C. C., Luca, C. and Tonelli, A. E. (2001). Polymer-cyclodextrin
inclusion compounds: Toward new aspects of their inclusion mechanism. Macromolecules, 34(5):
1318 − 1322.
25.
Rahim, N. Y., Tay, K. S. and Mohamad, S. (2018).
Chromatographic and spectroscopic studies on β-cyclodextrin functionalized
ionic liquid as chiral stationary phase: enantioseparation of NSAIDs. Adsorption
Science & Technology, 36(1-2): 130 − 148.