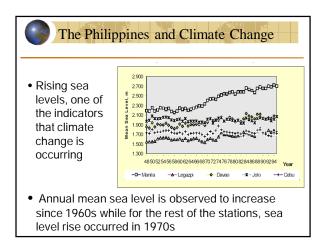
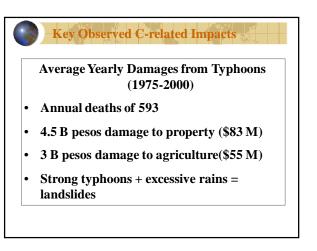
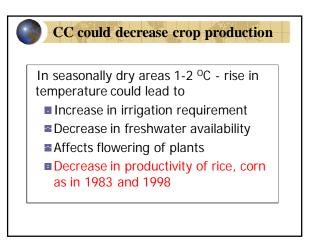
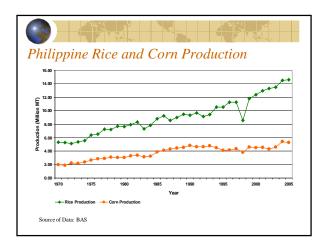
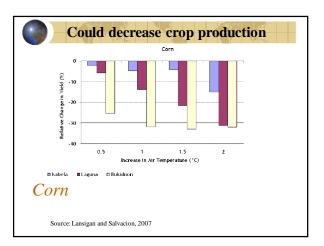

Climate Change Adaptation in the Agriculture and Water Sectors in the Philippines Juan M. Pulhin, Ph.D. Professor and Scientist II University of the Philippines Los Baños Inception Workshop on "Mainstreaming Adaptation to Climate Change in Agriculture and Water Sectors August 10 –11, 2009 Corus Hotel, Kuala Lumpur, Malaysia


Outline of Presentation The Philippines and Climate Change Potential Impacts of CC in Agriculture and Water Sectors Adaptation Strategies Issues and Challenges



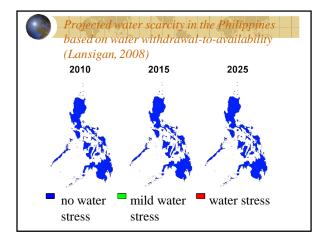


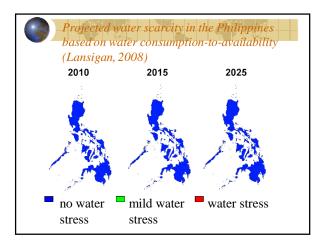


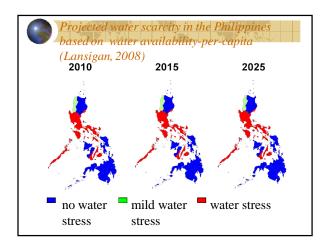

2006 TYPHOONS		
SUMMARY OI	F EFFECTS	
AFFECTED FAMILIES	2.38 Million	
AFFECTED PERSONS	11.193 Million	
DISPLACED FAMILIES	.678 Million	
DISPLACED PERSONS	3.398 Million	
DEAD	1,158	
INJURED	3,235	
MISSING	891	
DAMAGED HOUSES	820,127	
DAMAGE TO AGRICULTURE	PhP 19.989 Billion	

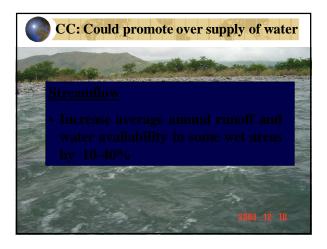
	Iore prominent ENSO events and a shift in easonal cycle
	ncrease chances of summer droughts and oods
	ncrease in tropical cyclone intensities is nggested
۰P	otential sea level rise

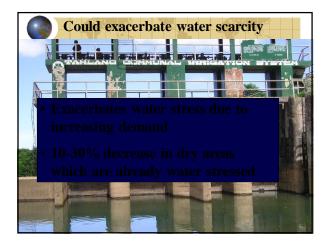
	1980	1991	2002
Number of farms (M)	3.42	4.61	4.82
Farm Area (M Ha)	9.73	9.98	9.67
Average farm area (Ha)	2.82	2.16	2.00>
	2005	2006	2007
Volume of production (Th MT)	73,725.9	77,401.1	78,775.7
Value of production (MP) at current prices	410,303.1	459,585.3	510,266.2 (14% of DGP)
Area harvested (Th Ha)			
Palay	4,070.4	4,159.9	4,272.9
Corn	2,441.8	2,570.7	2,648.3
Yield per hectare (MT)			
Palay	3.60	3.68	3.80
Corn	2.20	2.37	2.54
Total employment (36% of TE in 2007)	112,502	114,451	123,855
Status of irrigation (in hectares)			
Total irrigable area	3,126,340	3,126,340	3,126,340
Total service area	1,413,236	1,427,924	1,434,597
Irrigation development (%)	45.2	45.7	46.0

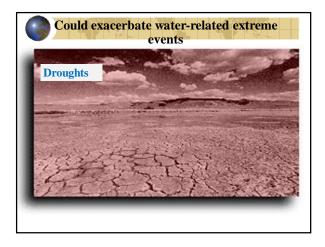


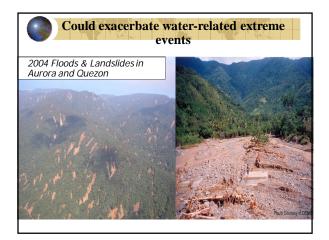


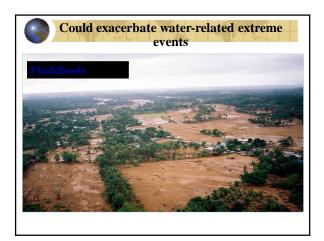



	Impacts of clima al productivity (%	and the second se
	Without carbon fertilization	With carbon fertilization
	effect	effect
World (output weighted)	-15.9	-3.2
Industrial countries	-6.3	7.7
Developing countries	-21	-9.1
Asia	-19.3	-7.2
Philippines	-23.4	-11.9


Wate:	r availabi	lity, in Mc	m
Water Resources Region	Groundwater	Surface Water	Total Water Resources
	Potential	Potential	Potential
X Northern Mindanao	2,116	29,000	31,116
XII Southern Mindanao	1,758	18,700	20,458
VI Western Visayas	1,144	14,200	15,344
XI Southeastern	2,375	11,300	13,675
Mindanao			
IX Western Mindanao	1,082	12,100	13,182
VIII Eastern Visayas	2,557	9,350	11,907
ll Cagayan Valley	2,825	8,510	11,335
III Central Luzon	1,721	7,890	9,611
IV Southern Tagalog	1,410	6,370	7,780
l llocos	1,248	3,250	4,498
V Bicol	1,085	3,060	4,145
VII Central Visayas	879	2,060	2,939
TOTAL	20,200	125,790	145,990







Practice	Scale	Reactive/	Planned/	Example
140400	000.0	Proactive	Autonomous	Znampio
Adjustment of cropping calendar and pattern	Local	Reactive	Autonomous	Widely used
Changes in management and farming techniques	Local	Reactive	Autonomous	Widely used
Use of heat-resistant varieties Local/Subregional	Local/Sub- regional	Proactive	Autonomous	Widely used
Diversified farming, intercropping, crop rotation	Local	Proactive	Autonomous	Widely used
Development of early	Local/	Proactive	Planned	Philippines,
	Local/ Regional	Proactive	Planned	Philipp Thailar
warning systems	Regional			Viet Nam

Examples of location –specific adaptation strategies to climate change in agriculture			
Adaptation Strategies	Location	Literature	
Reduction in area cultivated	Los Banos, Daet, Iloilo	Lansigan et al (2000)	
Modification in choice of crops or cultivars	Los Banos, Daet, Iloilo	Lansigan et al (2000)	
Changes in agronomic practices (fertilizer use, irrigation, and control of pests and diseases)	Los Banos, Daet, Iloilo	Lansigan et al (2000)	
Using farm wastes wisely	Central Luzon	Tibig and Lansigan (2007)	
Organic farming	Cordilleras	Tibig and Lansigan (2007)	
Use of sulfate-containing fertilizers	Central Luzon	T.M. Corton et al (2000)	
Direct seeding crop establishment	Central Luzon	T.M. Corton et al (2000)	
Planned cropping sequence and schedule	Los Banos, Daet, Iloilo	Lansigan et al (2000)	
Crop insurance	Isabela and South Cotabato	Lansigan (2003)	

Practice	Impact to be reduced	Scale	Reactive/ Proactive		Beneficiary Sector
Multi-purpose reservoirs, dams, water-impounding system	Drought, flood, erratic rainfall pattern, water shortage	Region al	Proactive	Planned	Agriculture, Household, Industry, Power generation
Metering and pricing to encourage water conservation	Water shortage	Local	Reactive	Autonom ous	Household

Some Issues and Challenges

- Raising public awareness and appreciation of climate change issues and concerns
- Instituting enabling law and national adaptation framework to mainstream adaptation in development policies and programs
- Strengthening the capacity of local government units to champion effective adaptation strategies at the local level

Some Issues and Challenges

- Improving the science of climate change projection relevant to national and local level
- Enhancing capacity of researchers to conduct integrated assessment of climate change impacts, vulnerability and adaptation
- Undertaking more research to better understand climate change, its impacts and solutions, especially at local levels
- Strengthening the science-policy-local action interlink

Some Issues and Challenges

- Adopting a more holistic approach to building the adaptive capacity of vulnerable groups and localities and their resilience to shocks
- Building on the experience of indigenous adaptation strategies to enhance effectiveness of future adaptation
- Developing and using adaptation metrics for planning and monitoring purposes to enhance adaptation effectiveness

