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ABSTRACT 

This paper presents an initial approach for creating autonomous controllers for the car racing game using a 

hybrid technique. The Differential Evolution (DE) algorithm is combined with Feed-forward Artificial Neural 

Networks (FFANNs) to generate the required intelligent controllers in a well-known car racing game, namely The 

Open Racing Car Simulator (TORCS). TORCS is used as a platform in most of the IEEE conference competitions. 

The main objective of this research is to test the feasibility of the DE implementation in TORCS platform. The 

literature showed that the application of DE in Real Time Strategy game returned promising results in evolving 

the required strategy gaming controllers. Interestingly, there is still no study thus far that has been conducted in 

applying DE into TORCS game platform. This research result shows that DE performed well in TORCS even 

though a very simple fitness function was used. This indicates that DE has well-tuned the neural network weights 

to generate optimal and sub-optimal controllers in TORCS. 
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INTRODUCTION 

 

Computer games have become very popular in the recent years. These games provide an 

interesting real-world simulation to researchers. However, most of the games were built with 

low level Artificial Intelligence (AI) which sometimes makes the game boring to play. In order 

to attract and increase players’ interest, effective AI technology is required. The purpose of 

incorporating AI technology in the games are twofolds; to generate human-like Non-Player 

Character (NPC) controllers as well as to increase the number of players participating in the 

game, particularly for online games, such as car racing game (Togelius and Lucas, 2005), Real-

Time Strategy (RTS) game (Chang, et al., 2011), Mario Bros (Ng, et al., 2011), GNU Go (Tan, 

et al., 2012), etc.  

Car racing is one of the game genres that is available in most of the gaming devices, and 

TORCS was introduced and developed to be used in competitions (CIG, 2013). TORCS is 

interesting as it provides real world driving simulation. TORCS provides a number of 

parameters that can influence the behaviour of the driver, including road curvature, surface 

friction and characteristics of the track. As for the car itself, speed, acceleration, direction, 

slipping and skidding of wheels may influence the driving status. Because of the game’s 

complexity, TORCS is also suitable to be used as a platform for testing new algorithm 

performance. 
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Over the last decade, a number of researchers have investigated the idea of using 

Artificial Neural Networks (ANNs) as controllers with various algorithms to optimize the car 

racing (Togelius and Lucas, 2005; Agapitos, et al., 2007). Car racing was tested using 

NeuroEvolution of Augmenting Topologies (NEAT) methods (Cardamone, et al., 2009) to 

evolve the NN for controlling the behaviour of car. Besides, the single-objective evolution 

algorithms such as Genetic Algorithm (GA), Evolution Strategy (ES), Evolution Programming 

(EP) and Multi-objective Evolution Algorithm (MOEA) (Munoz, et al., 2010), and Fuzzy Logic 

have been applied to generate the required controllers for car racing game (Perez, et al., 2009). 

However, the combination of Differential Evolution (DE) and ANNs into car racing game still 

remains an open path for research. Hence, this motivates us to test the possibility of 

implementing DE in TORCS research.  

DE was introduced by Storn and Price in 1995 (Storn, R., and Price, K. 1997). The 

primary idea is to solve Chebychev polynomial fitting problem. Since then, DE has been widely 

used to solve complicated optimization problems, such as parallel computing and constrained 

optimization. Initially, DE is a population-based optimization algorithm and was developed to 

optimize real parameter as well as real valued functions. DE is different from other evolution 

algorithms, as it is based on global optimization and it is used to solve non-linear, noisy and 

non-continuous problems. DE has been proven to perform better compared to other acclaimed 

global optimization methods and has done well in parallel computation (Storn and Price, 1997). 

It can also be used to train ANNs for autonomous robot and Real-Time Strategy game (Ilonen, 

et al., 2003; Chang, et al., 2011). In (Liu and Lampinen, 2005), fuzzy logic controllers were 

incorporated to DE to find the near-optimum solution.  

In this paper, DE is used to optimize the generated ANNs weights for TORCS game. 

The objectives of this work are to investigate the feasibility of DE in car racing game and to 

design a new function for car racing. A three layers perception NN is used as controller to guide 

the driver. This hybrid technique showed promising results in the evolution and testing phases. 

This paper is organized as follow. Section II introduces TORCS, which is the platform 

used in this research. Section III focuses on the methods used in this research, where DE and 

ANNs are briefly introduced. Section IV discusses the comprehensive results that we obtained 

from the experiments. Finally, the summary of the research will be discussed in Section V.  

 

TORCS SIMULATOR 

 

TORCS is an ideal platform for optimization algorithm (Loiacono, Cardamone & Lanzi, 2009). 

It provides a 3D visualization with various bots and a number of different tracks as shows in 

Figure 1. The structure is based on a client-server model: the bots are run as external processes 

connected to the server through UDP connections. That means we can create our own bots as a 

controller to connect to the server through UDP connection. As the car is simulated with a 

sophisticated physics engine, many aspects of racing car like traction, aerodynamics, wheel 

slippage, etc., are taken into account during the gameplay. These characteristics are included in 

TORCS to make it  a meticulous car racing simulator that visualizes real car racing 

environment.   
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FIGURE 1. The Open Racing Car Simulator (TORCS) screenshot. 

 

Basically, the client bots identify itself to the server and then establish a connection, 

after that the server sends two basic messages: the number of parameters to optimize and the 

number of simulation ticks for the whole optimization process. It will spend 20ms of simulated 

time in each game tick. After the sensory information is sent to the client bots, the client has to 

wait for 10ms of real-time for a response.  

TORCS provides a lot of sensory and parameter information as shown in Table 1. 

However, only a few of them are used in this research and they are:  

1. Angle between the car direction and the direction of the track axis. 

2. Distance covered by the car from the beginning of the race till the end of the race. 

3. Distance between the car and the track axis.   

4. Current damage of the car. 

5. Vector of 19 range finder sensors: each sensor represents the distance                    

between the track edge and the car. 

6. The velocity of the car. 

 
TABLE 1. Sensors and parameters available in TORCS. 

 

Name  Description  

Angle  Angle between car direction and the direction of track axis 

Current lap time  Time elapsed during current lap 

Damage Current damage of car  

Distance From Start 

Line 
Distance of the car from the start line along the track line 

Distance raced Distance covered by the car from the beginning of the race 

Fuel Current fuel level  

Gear  Gear form {-1, 6}, -1 reverse, 0 neutral, 1~ 6 is forward. 

Focus 
Vector of 5 range finder sensors: each sensor returns the distance between the track edge 

and the car within a range of 200 meters. 

Last Lap Time Time to complete the last lap 

Opponents Vector of 36 opponent sensors 

Rotation per minute Number of rotation per minute of the car engine 

Speed X Speed of the car along the longitudinal axis of the car. 

Speed Y Speed of the car along the transverse axis of the car. 

Speed Z Speed of the car along the Z axis of the car 
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Track finder 
Vector of 19 range finder sensors: each sensors returns the distance between the track 

edge and the car within a range of 200 meters 

Track Position Distance between the car and the track axis. 

WheelSpinVel Vector of 4 sensors representing the rotation speed of wheels. 

z Distance of the car mass center from the surface of the track along the Z axis. 

 

The selected sensors affect the outcome of the preliminary test. For this reason, only 

some of them were selected to be evolved as other sensors and parameters did not affect the 

driving results. It is also costly in terms of time if all sensors are used in the optimization and 

testing phases. Although the opponent sensors may also be important, it is not included in this 

research, as this work only focuses on solo-car racing optimization. Figure 2 shows the various 

sensors used for the simulator. 

 
FIGURE 2. Screenshot of sensors used in the simulator. 

 

METHOD 

 

This section briefly describes the methods used in this research. It involves description of the 

FFANN, DE, and fitness function used. 

FEED-FORWARD ARTIFICIAL NEURAL NETWORK (FFANN) 

 

FFANN is proven as a suitable technique for optimization processes in games and robotics 

(Chin, et al., 2008; 2010; Ng, et al., 2011). Because of its simple architecture, FFANN is used 

widely for game controlling, such as 3D First Person Shooter game, RTS game, Ms. Pac-man, 

GNU Go game and Super Mario Bros (Ng, et al., 2011; Chang, et al., 2011; Tan, et al., 2012). 

Unlike Multi-Layer Perceptron (MLP) ANN and Feedback ANN, the FFANN only has 

one straightforward connection without cycle and loops. The simplest architecture of FFANN 

is referred to as single layer perception (SLP), which includes one input layer and one output 

layer. In addition to these two layers, hidden layers are located between the input and the output 

layers. Hidden neurons are used to extract important features contained in the input. Figure 3 

shows the structure of FFANN and the methods used. In this research, the FFANN with one 

hidden layer is used in TORCS. There are 13 input neurons, 16 hidden neurons and 3 output 

neurons in the network architecture. The input neurons represent the sensors inputs of: 10 range 

finder sensors, angle between the car direction and the direction of car axis, distance raced and 

the car’s velocity. The output includes values for accelerate, brake and steer. 
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The weights of the FFANN are real numbers between N(-1, 1) which are represented as 

the genes of each individual. Binary Sigmoid activation function is used to train the network.  
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FIGURE 3. Structure of FFANN and methods used. 

 

DIFFERENTIAL EVOLUTION (DE) 

DE is a population-based optimization algorithm. Based on DE’s greedy scheme, after 

generating a new population through crossover and mutation, the parents will be mated to 

produce its own offspring for a better solution. DE differs from other single-objective 

optimization algorithm such as GA, ES, EP, etc. in that there are a minimum of three parents 

that are used in DE. DE uses one main parent with two supporting parents in generating a new 

offspring. This is an advantage because this kind of DE solutions will not easily converge in 

the environment.  

In this work, we conducted 10 runs for the optimization process with a crossover rate of 

0.7 and a mutation rate of 0.02 (Chang, et al., 2005; Chin & Teo, 2010; Chin, et al., 2008). 

Using these values, our DE solution was able to successfully generate the optimal controllers. 

The population size is set at 10 and the termination condition is 1000 generations. The DE 

algorithm is shown in Figure 4. 
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FIGURE 4. Flowchart of DE. 

 

FITNESS FUNCTION USED 

The Fitness Function used is a very simple function that is solely based on the distance of the 

race. A comprehensive comparison of different fitness functions will be part of our future work. 

The fitness function is given by Equation 1: 

                                                             𝐹 = 𝐷𝑟𝑎𝑐𝑒𝑑                                                                                            (1) 

Fitness function is important in the EAs cognition. Different results can be obtained 

with different fitness functions. In some cases, the computation time can be costly if a complex 

fitness function is used. On the other hand, the training can fail if the combination of the 

functions is too simple. In this work, we used a single component function which is the 

maximum distance of the race within 60 seconds during the gameplay. Surprisingly, the hybrid 

DE and ANN was able to generate the required controllers using this simple function. 

The track used for this research is shown in Figure 5, which is a normal track used in 

most TORCS competitions, without many curves. The track length is 2,057.56 meters.  
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FIGURE 5. Screenshot of track used in this experiment. 

 

RESULTS AND DISCUSSIONS 

 

The results are shown in Figures 6, 7, and 8 which clearly show that DE has successfully 

optimized the required controllers for TORCS game. In can be seen in Figure 6 that the fitness 

value increases rapidly from the 1st generation to the 115th generation. Then, this fitness value 

increases slowly until the 822nd generation and there is no further increase after the 822nd 

generation. The optimal controller reached a fitness score of 9241.8 at the end of the run. 

Figure 7 shows that the optimal solution learnt slower than the controllers generated in 

Figures 6 and 8. The optimal controllers reached fitness score of 7500 -8900 between 

generations 25th and 680th. Then, the optimal solution reached a high score of 9023.99 after 

generation 680th and maintains it till the end. 

Figure 8 shows that the optimal controller learnt very fast and reaches a high fitness 

score before the 30th generation. Then, the fitness score increases slowly from 30th generation 

onwards. Finally, the solution found was able to reach a fitness score of 9057.13 after the 819th 

generation. Table 2 shows the tabulated fitness scores obtained during each set of experiment.  

 

 
FIGURE 6. Fitness score versus generation for Run 6. 
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FIGURE 7. Fitness score versus generation for Run 4 

 

  
FIGURE 8. Fitness score versus generation for Run 9 

 

TABLE 2. Highest fitness scores obtained for all optimized controllers 

Run Highest Fitness 

1 7,400.57 

2 8,768.69 

3 8,725.92 

4 9,023.99 

5 8,716.94 

6 9,241.48 

7 8,476.62 

8 8,155.17 

9 9,057.13 

10 8,242.68 

Average 8,712.07 

Max 9,241.48 

Min 8,155.17 

 

Based on the result shown in Table 2, the combination of DE and FFANN approach 

successfully generated the required controllers. Runs 4, 6 and 9 (in bold) show the generated 

controllers are able to obtain a fitness score of more than 9000 during the optimization 

processes, which is a highly interesting result as it is not easy to score 9000 in TORCS game 

with a single component fitness function. Usually, a complex single fitness function or a 

combination of several fitness functions and a good AI strategy are required in order to generate 

controllers that are capable of obtaining a fitness score higher than 9000 in any TORCS 

competition (Togelius, and Lucas, 2005). Thus, based on Table 2, we can conclude that the 
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controllers generated in Run 6 outperformed the controllers generated in Run 9 and Run 4 and 

the controllers generated in Run 9 outperformed the controllers generated in Run 4.  

We observed and noted that some of the generated controllers evolved interesting 

driving skills. One of the best controllers drove with a maximum car speed without releasing 

the accelerator at all even when it is manoeuvring a curve. But, the controllers pressed both 

accelerator and brake together when it is negotiating the curved section. In the second case, the 

generated controller drove without using brake at all. The controllers slightly released the 

accelerator pedal when approaching the curve. Hence, the car slowed down when it reaches the 

curve but it sped immediately after the curve. This can happen because there is no big curve or 

U-turn in the map. This is probably the reason why, the controller was able to drive at a high 

speed to overcome the curve. In another case, the controller moved with a maximum car speed 

in the curved sections without pressing the brake or releasing the accelerator pedal. As a result, 

the car lightly bumped to the wall when it slowed down.  

We conducted tests for all of the generated optimal controllers and the results are shown 

in Table 3. All optimal controllers were tested for 10 races, and a ranking system and best lap 

time were considered in these tests. The result shows the optimal controller generated from Run 

4 was able to complete all the tests and won the competition with the best lap time of 45.85s, 

although it was slightly slower compared to the controllers generated from Run 6 and 9. 

Surprisingly, the controller generated from Run 6 completed only 2 out of 10 tests and the 

controller generated in Run 7 outperformed Run 6. The controller generated from Run 7 was 

not worse off than the controller generated from Run 6 during the optimization stages. On the 

other hand, the controller generated from Run 9 failed to complete any of the tests. The 

controllers generated from Run 2, 7 and 10 outperformed the controller generated from Run 9. 

The optimal controllers generated during the optimization stage performed worst in the testing 

phase due to the noise inclusion in the testing phases.  

 
TABLE 3. Competition results for all generated optimal controllers 

Run Test(10) 

Ranking Laps Best Lap 

Time(s) Zero one two three four 

1 1 4 3 2 0 55.06 6th 

2 5 1 0 3 1 46.15 4th 

3 6 2 2 0 0 48.30 9th 

4 0 0 0 0 10 45.85 1st  

5 3 1 4 2  46.15 7th  

6 7 0 0 1 2 45.36 3rd  

7 0 0 0 6 4 49.13 2nd  

8 10 0 0 0 0 00.00 10th 

9 2 2 5 1  45.73 8th 

10 5 3 0 1 1 50.42 5th 

 

CONCLUSIONS 

This results of these experiments showed that the application of Differential Evolution 

combined with Feed-Forward Artificial Neural Network performed well in generating optimal 

car racing controllers. The generated controllers were able to control the simulated car even 

though a simple single component fitness function was used. Some of the generated controllers 

were superior as they were able to complete four laps of the race with extremely high speed 

without bumping to any wall or obstacle during the races. Other sub-optimal controllers (which 

achieved 5000-8500 average fitness score in the optimization stage) performed slightly worst. 

However, these controllers were able to move steadily during the testing phases and played the 

game with human-like feature.  
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A more complex fitness function will be considered in the future in order to generate 

better controllers that can be used in different maps. Besides, different types of AI methods will 

be implemented and tested as well. 
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