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ABSTRACT 

 

Simultaneous localization and mapping (SLAM), also known as concurrent mapping and localization (CML), is 

an important topic or robotics files. This method produces a real-time map of an environment and finds the current 

position of a robot on that map. This method is generally used to solve the problem of “Where am I?” for 

localization, “Where do I go?” for goal determination, and “How do I go there?” for robot motion planning. 

Recently, the number of studies in this area has increased rapidly and expanded to different areas. In this paper 

analyzes SLAM or CML, which is currently a hot topic in the field of robotic research. In addition, this paper 

describes methods for solving SLAM problems, presents evaluation methods for SLAM, analyzes recent research 

on SLAM worldwide, and studies the academic importance of SLAM. This paper also reviews the use of SLAM for 

humanoid robots and aims to address the issue of the significance of SLAM engine in the future of stereo vision 

on humanoid robots.  

 

Keywords: Visual Simultaneous Localization (Localisation) and Mapping, VSLAM, Concurrent Mapping and 
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INTRODUCTION 
 

Simultaneous localization and mapping (SLAM), also known as concurrent mapping and 

localization (CML), is a significant issue in the field of robotics. The SLAM acronym was first 

presented in a mobile robotics survey paper at the International Symposium on Robotics -

Research in 1995 (Durrant-Whyte & Bailey, 2006; Durrant-Whyte, Rye & Nebot, 1996). The 

main idea of SLAM is to deal with the localization and map building problem in an unknown 

environment (Kovacs & Tevesz, 2012). SLAM addresses the problem of the possibility for a 

mobile robot to be placed in an unknown location and environment, where it will incrementally 

build a consistent map of the environment while determining its location within this map. 

SLAM method generates a real-time map of an environment and finds the position of a robot 

on that map. This method solves the problem of localization, goal determination, and motion 

planning of robots. Recently, studies in this area have increased rapidly and expanded to 

different areas. In addition, the number of ISI papers, patents, and theses based on SLAM 

gradually increases each year.  

SLAM can be applied to real-life problems such as natural disasters. During an 

earthquake, SLAM can be used to create a map that will allow a rescue agent to help victims 

find their way back or locate the right path. This method can also be used to find victims in a 

collapsed building. In the medical field, SLAM can be used to create a map for endoscopy 

activities. SLAM is implemented in some real-life applications, such as oil pipeline inspection, 

ocean surveying and underwater navigation, mine exploration, coral reef inspection, military 

applications, and crime scene investigation. Other studies have discussed the use of SLAM in 

other real-time applications (Davison et al., 2007) (Chang et al., 2007). 
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Solving the SLAM problem has become a popular area of research in the past years. 

SLAM problems generally include four major units, namely, sensor uncertainty, 

correspondence problem, loop-closing problem, and time complexity (Begum, Mann & Gosine, 

2008). Sensor uncertainty explains the noise of each instrument used. The correspondence 

problem is the difficulty of different viewpoints and the finding of a similarity between the 

same object from each viewpoint. Data association is particularly important when a vehicle 

returns to a previously mapped region after a long excursion, which is called “loop closing” 

problem. Loop closing explains how the loop completes the process. The time complexity 

clarifies how fast the processing algorithm needs to be to perform and produce results in real 

time. 

However, SLAM has some limitations. One such limitation is the need for quadratic 

scaling against the number of landmarks in a map. For real-time implementation, this scaling is 

potentially a substantial limitation in the use of SLAM methods. Environment modeling 

depends on both environment complexity and sensing modality limitations (Bailey & Durrant-

Whyte, 2006). In addition, current approaches cannot perform consistent mapping for large 

areas given their high computational cost and uncertainties (Aulinas et al., 2008a; Aulinas et 

al., 2008b). Every sensor carries certain errors, which are often referred to as measurement 

noise. Sensors also have several range limitations. For instance, light and sound cannot 

penetrate walls, thereby requiring navigation through the environment (Aulinas et al., 2008a; 

Aulinas et al., 2008b). 

The rest of the paper is organized as follows: Section 2 presents several methods used 

to solve SLAM problems, such as Kalman filter (KF) and grid-based methods. Section 3 

elucidates evaluation methods for SLAM. Section 4, analyzes popular studies in the area of 

SLAM that have been conducted worldwide. The academic importance of SLAM is emphasized 

in Section 5 and Section 6 deals with conclusion and future works. 

 

COMPARISONS AMONG SLAM METHODS 
 

In this section, the four widely used SLAM methods, namely KF, particle filter, feature-

based SLAM, and graph-based SLAM is elucidated. 
 

KF AND ITS VARIATIONS 

 

This probabilistic technique is popular because robot mapping is characterized by uncertainty 

and sensor noise. Probabilistic algorithms solve these problems by explicitly modeling different 

sources of noise and their effects on measurements. KF is a Bayesian filter that represents 

posteriors by using Gaussians, that is, unimodal multivariate distributions that can be 

represented compactly by a small number of parameters. KF SLAM assumes that state 

transition and measurement functions are linear with added Gaussian noise and the initial 

posteriors are also Gaussian. According to Chen (2012), more than 20 research have presented 

to improve the KF method in SLAM. In this paper, some important methods, such as extended 

KF (EKF), unscented KF (UKF), extended information filter, and sparse-extended information 

filter (SEIF) is shown.  

  

KF has high convergence, is capable of handling uncertainty, reduces memory usage, 

and handles large areas. However, this method also has some drawbacks. For long missions, 

the number of landmarks will increase and computer resources will be insufficient for real-time 

map updating (Aulinas et al., 2008a; Aulinas et al., 2008b). The Gaussian assumption is slow 

in high-dimensional maps, requires highly robust features, and includes data association 

problems (Aulinas et al., 2008b). EKF-based approaches have a limited number of 3D points 

that can be tracked, apart from divergence from the true solution because of linearization errors 
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(Alcantarilla et al., 2013). Nevertheless, Kalman-based solutions that rely on landmarks have 

been modified to reduce the complexity of general EKF from O (L3) to O (L2) (Holmes & 

Murray, 2013). 
PARTICLE FILTER 

 

Particle filter is a non-parametric and recursive algorithm based on Bayesian filters. Some 

researchers have applied particle filter in their SLAM, including (Aulinas et al., 2008b; 

Tornqvist et al., 2009). Particle filter can handle non-linearity and non-Gaussian noise. This 

method can also solve optimal map building and data association. However, particle filter 

results in inefficient cost increase, is more complex, and is unstable for large scenarios. This 

method also requires a large number of particles to track systems with diffuse posterior 

distributions (Eliazar & Ronald, 2006). Among the well-known methods based on particle filter 

are FastSLAM (Montemerlo et al., 2002) and FastSLAM2 (Montemerlo et al., 2003). The 

FastSLAM algorithm utilizes an important characteristic of the SLAM problem. The 

FastSLAM complexity is O(P log L) in the number of landmarks L, with a particle filter with 

P particles used to represent the trajectory (Holmes & Murray, 2013).  
 

GRAPH-BASED SLAM 

 

Every node in the graph corresponds to a pose of a robot during mapping. The edge between 

two nodes corresponds to the spatial constraints between them. Graph-based SLAM methods 

have undergone a renaissance and are currently among the state-of-the-art techniques with 

respect to speed and accuracy. A graph-based SLAM approach constructs a simplified 

estimation problem by abstracting raw sensor measurements (Grisetti et al., 2010). This method 

uses the divide-and-conquer approach in which the world is divided into equally spaced cells. 

Each cell stores the probability of the corresponding area that has been occupied by an obstacle. 

The cells are assumed to be conditionally independent. Graph-based SLAM methods are easy 

to use in robotic applications if a known mapping is given in advance.  
 

FEATURE-BASED SLAM 

 

SLAM relies on simple point features for describing an environment (Pedraza et al., 2009). 

However, two main drawbacks occur when relying solely on this representation. The first and 

obvious problem emerges when the environment does not have a sufficient structure to extract 

feature points robustly, for example, an underground mine. The second and more significant 

issue is the use of only a small fraction of information available from popular sensors, such as 

laser-range finders, is exploited. Most data that do not correspond to the expected features are 

discarded (Pedraza et al., 2009). Laser ranging systems are accurate active sensors that mostly 

operate on the time-of-flight principle by sending a laser pulse in a narrow beam toward the 

object and measuring the time used by the pulse to reflect the target and return to the sender 

(Aulinas et al., 2008a; Aulinas et al., 2008b). Feature-based SLAM is widely used in image 

processing to find and select a landmark. Some image processing methods can also be used to 

define a landmark.  
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EVALUATION METHODS 
 

 
FIGURE 1. Flowchart of the evaluation methods for SLAM application. 

 

Figure 1 shows the evaluation methods for SLAM application. The evaluation methods 

are divided into two parts, namely, allocated resource and precision. Time processing and 

memory usage are sub-evaluation methods in the allocated resource category. Tuna et al. (2012) 

compared the performances of EKF, compressed EKF (CEKF), and UKF in terms of their 

processing times; CEKF outperformed the EKF and UKF. UKF is based on unscented 

transform. This method reduces estimation errors and is more computationally costly than EKF. 

UKF differs from EKF and CEKF in that it does not require deriving Jacobian matrices. The 

computational complexity of UKF is O (K), where K is the number of landmarks. For memory 

evaluation, He et al. (2011a) compared SEIF-SLAM and EKF-SLAM in terms of their average 

memory usage against the number of landmarks. SEIF-SLAM requires lower computational 

cost than EKF-SLAM. However, SEIF-SLAM is less efficient than EKF-SLAM when fewer 

than 1,000 features exist in the map. The reduced efficiency of SEIF-SLAM is mainly due to 

the significantly greater effect of computation in the scarification step than that of the sparse 

property when only few features are available. As the number of features increased over 1,000, 

SEIF-SLAM became more efficient than EKF-SLAM. In addition, SEIF-SLAM needs lesser 

storage than EKF-SLAM, and the gap increases when the number of features increases. SEIF-
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SLAM maintains an information matrix, which is sparse and more superior to the non-sparse 

matrix in storage (He et al., 2011a). 

Precision and recall are the common sub-evaluation methods for drift (Botterill et al., 

2013), noise, and environment. Odometry and velocity measurements provide an estimate of a 

vehicle’s motion. The error in the estimated pose drifts with time because of noise that corrupts 

data. Reducing drift and noise elements created by used sensors, such as laser, radar, odometry, 

and camera, is critical in any SLAM application. Precision is the measure of the ability of 

SLAM application to present only relevant drift or noise items. Recall measures the ability of 

SLAM application to present all relevant drift or noise items. Noise can also be measured by 

peak signal–noise ratio, distance error (Tutar et al., 2006), or adaptive online estimate for the 

SLAM problem by using the mean and variance of innovation (Won-Seok, Jeong-Dwan & Se-

young, 2009).  

Environmental issues also affect SLAM evaluation. Different environments, such as 

dynamic (Yaghmaie, Mobarhani & Taghirad, 2013), outdoor, indoor, underwater (Kim & 

Eustice, 2013), and in-air, need different methods of evaluating SLAM algorithms. Precision 

and recall are essential methods for verifying SLAM algorithms’ robustness to environmental 

factors. Researchers have used different types of maps, such as 3D, map, and point maps, to 

measure environmental factors. Some SLAM methods for different environments are 3D 

(Aghili, 2011; Cole & Newman, 2006; Olivier et al., 2006; Tong, Barfoot & Dupuis, 2012; 

Weingarten & Siegwart, 2005), stereo (Ngo et. al, 2006), indoor (Hwang & Song, 2011; Lee & 

Song, 2010), outdoor (Abdallah, Asmar & Zelek, 2007), underwater (Eustice, Pizarro & Singh,. 

2008; Eustice, Singh & Leonard, 2006; Fraundorfer & Scaramuzza, 2012; Jaulin, 2009; 

Kumagni, 2007; Mahon et al., 2008; Olson, Leonard & Teller, 2006), aerospace (Grzonka, 

Grisetti & Burgard, 2012; Saeedi et al., 2011; Steder et al., 2008), and dynamic (Yaghmaie, 

Mobarhani & Taghirad, 2013). Cole and Newman (2006) used laser for 3D outdoor SLAM and 

presented an algorithm for segmenting 3D laser-range data from a moving platform into distinct 

3D point clouds referenced to vehicle poses. The processors of some robots work with mobile 

embedded systems that have limited processing power. This limited power must be devoted to 

interpret visual frames and to the robot application. This feature limits the computational ability 

of SLAM algorithm and compounds the previous problem that a low frame rate exists for vision 

and greater noise exists in visual interpretation. 

So far, no researcher has evaluated 3D SLAM performance based on cluttered, 

occlusion, and trajectory tolerances, which have been used widely in motion tracking 

algorithms (John, Trucco & Ivekovic, 2010; Khosravi & Safabakhsh, 2008; Zin, Abdullah & 

Abdullah, 2013). This measurement method can define the robustness of SLAM mapping 

tracking to external environmental behaviors. It is suggested that this evaluation method is used 

in future SLAM research. 

 

ONLINE DATASETS 

 

Table 3 presents online datasets applicable for SLAM research until 2013, such as indoor and 

outdoor datasets. Most datasets focus on outdoor environments because they need extensive 

research and are difficult to evaluate. Outdoor datasets with ground truth are difficult to create 

and need considerable information and equipment. Some well-known datasets are the datasets 

of the Intel research lab, FHW Museum, Belgioioso, MIT CSAIL, MIT Killian Court, and 

Freiburg Bldg. 79. The website http://www.openslam.org  provides a collection of open-source 

SLAM packages that include many algorithms and datasets. 

 

 

 

http://www.openslam.org/
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TABLE 3. Online Datasets in the area of SLAM until year 2013. 

 

Dataset Name or authors  Description Link 

Eduardo Nebot(Durrant-Whyte, Rye 

& Nebot, 1996; Nieto, Bailey & 

Nebot,  2007; Nieto, Guivant & 

Nebot, 2006) 

Numerous large-scale outdoor datasets, 

notably the popular Victoria Park data. 

http://www.acfr.usyd.

edu.au/homepages/aca

demic/enebot/dataset.

htm 

 

Chieh-Chih Wang (Durrant-Whyte 

& Bailey, 2006; Lin et al., 2012; 

Wang et al., 2007) 

Three large-scale outdoor datasets are 

collected by the Navlab11 testbed. 

http://www.cs.cmu.ed

u/~bobwang/datasets.

html 

 

Radish, (He et al., 2011b; Pedraza et 

al., 2009; Valencia et al., 2013)  

(The Robotics Data Set Repository)   

Many and varied indoor datasets, the Intel 

Research Lab in Seattle, the Edmonton 

Convention Centre, and more. 

 

http://radish.sourcefor

ge.net/ 

 

IJRR (The International  Journal of 

Robotics Research) 

IJRR maintains a Web page for each article, 

often containing data and video of results. A 

good paper example is by Bosse et al. [3], 

which has obtained benchmark dataset from 

Killian Court at MIT. 

 

http://www.ijrr.org/co

ntents/23\_12/abstract

/1113.html 

Michael Montemerlo, 

Nicholas Roy 

et al.  

Radish: The Robotics Data Set Repository 

Standard data sets for the robotics community 

http://radish.source

forge.net/ 

  

 

One of the well-known benchmark datasets for evaluating SLAM method was presented 

by (Kümmerle et al., 2009), but it requires an expert to set the ground truth manually for the 

dataset. Another benchmark dataset by (Burgard et al., 2009) uses an error metric to determine 

translational and rotational errors and weighting factor. 

Few studies on SLAM methods for stereo humanoid robots have been conducted. Figure 

4 shows the relationship among localization, mapping, robotic, and stereo vision. The 

combination of localization, mapping, and stereo vision on humanoid robots is a new research 

area that needs more attention.  

 

 

 
FIGURE 4. Relationship among localization, mapping, robotic, and stereo vision for SLAM application. 

 

http://www.acfr.usyd.edu.au/homepages/academic/enebot/dataset.htm
http://www.acfr.usyd.edu.au/homepages/academic/enebot/dataset.htm
http://www.acfr.usyd.edu.au/homepages/academic/enebot/dataset.htm
http://www.acfr.usyd.edu.au/homepages/academic/enebot/dataset.htm
http://www.cs.cmu.edu/~bobwang/datasets.html
http://www.cs.cmu.edu/~bobwang/datasets.html
http://www.cs.cmu.edu/~bobwang/datasets.html
http://radish.sourceforge.net/
http://radish.sourceforge.net/
http://www.ijrr.org/contents/23/_12/abstract/1113.html
http://www.ijrr.org/contents/23/_12/abstract/1113.html
http://www.ijrr.org/contents/23/_12/abstract/1113.html
http://radish.sourceforge.net/
http://radish.sourceforge.net/
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SLAM FOR HUMANOID ROBOTS 
 

Research on humanoid robots based on SLAM approach is one of the recent explorations in the 

field of robotics. Most well-known approaches of SLAM were created and demonstrated on 

wheeled robots on flat and even surfaces. However, humanoid robots have many degrees of 

freedom in their physical construction. Thus, the position of a camera attached to the robot will 

vary significantly (e.g., as the robot bends to take a step) even if the robot is on a flat surface, 

thereby leading to more noise and difficulty in interpreting a stream of images. This issue makes 

the SLAM problem for humanoid robots significantly more challenging.  

Alcantarilla et al. (2013 )proposed a real-time VSLAM which uses a single camera 

based on HRP-2. Their method is efficient, easy to implement, robust, and accurate. They also 

suggest the combination of vision and odometry information for localization for future work. 

Ozawa et al. (Ozawa et al., 2005) proposed the use of stereo visual odometry to create local 3D 

maps for online footstep planning. Among the advantages of utilizing visual odometry is that it 

is computationally inexpensive and the robot can use the method online. However, this 

approach cannot close loops, and the local nature of the obtained 3D maps prevents the maps 

from life-long mapping. For future work, the authors recommend the implementation of an 

intelligent gaze control and more efficient footstep planning to gather better information and 

enhance the robot’s capabilities. 

For GPU (Michel et al., 2007) presented a fully integrated online perception planning 

execution system for humanoid robots, which employs a GPU-accelerated model-based 3D 

tracker for perception. They recovered the robot’s pose and localized the robot with respect to 

the object. However, this method greatly depends on the 3D object for tracking, and the 3D 

model is relatively small. Hence, their method should be expanded to make it applicable for 

visual serving, grasping, or human tracking for human–robot interaction applications. This 

method can also be useful for more challenging humanoid robot scenarios, such as stair 

climbing.  

Davison et al, (2007) proposed a real-time algorithm for SLAM with a single and freely 

moving camera. A persistent map permits drift-free, real-time localization over a small area. 

However, accurate results were obtained only when the pattern generator, robot odometry, and 

inertial sensing were fused to aid visual mapping into the EKF framework, as shown in Holmes 

& Murray (2013) whereby they suggest extending the algorithm for a significantly large-scale 

environment. A network of accurate small-scale maps can be successfully combined by a 

relatively loose set of estimated transformations provided that the sub-maps in the background 

can be “map-match.” This feature is closely related to being able to solve the “lost robot” 

problem of localizing against a known map with only a weak prior position and has proven by 

2D laser data to be relatively straightforward. With vision-only sensing, this type of matching 

can be achieved with invariant visual feature types, such as SIFT, or by matching higher-level 

scene features, such as gross 3D surfaces. 

One of the most successful monocular SLAM approaches is the parallel tracking and 

mapping (PTAM) approach proposed by Klein and Murray (2007). PTAM was originally 

developed for augmented reality in small workspaces and combines the tracking of hundreds 

of features between consecutive frames for accurate camera pose estimation and non-linear map 

optimization. Map optimization uses a subset of all camera frames of special importance in the 

reconstruction (key frames) to build a 3D map of the environment (Alcantarilla et al., 2013). 

However, this approach does not perform well enough to enable an untrained user to learn this 

approach and apply it in an arbitrary environment. Future studies should address the 

shortcomings of the system and to expand its potential applications.  
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Several studies based on SLAM application on biped-walking robots have been 

conducted  (Alcantarilla et al., 2013; Dai, Xiong & Li,  2011; Ruiz, 2011; Seung-Joon et al., 

2011; Shamsuddin et al., 2011; Yeon Geol et al., 2011; Yi et al., 2011) Some problems 

encountered in these studies include noisy odometer, inaccurate 3D data, complex motions, 

motion blurring caused by fast robot motion, and large jerks (twitches, jolts)  caused by the 

landing of the robot feet. The processes that apply SLAM on humanoid robots are as follows: 

1. Establishing stereo vision 

2. Building a 3D map of environment 

3. Stereo visual SLAM techniques and bundle adjustment (BA) 

4. Local and global BA to obtain accurate 3D maps with respect to global coordinate frame 

5. Data association between a large map of 3D points and 2D features perceived by a 

camera 

6. Random sample consensus framework 

7. Perspective-n-point to camera pose 

 

CONCLUSION AND FUTURE WORKS 
 

New combinatory methods, such as grid-based FastSLAM (Stachniss et al., 2005) and graph-

based SLAM, with landmarks (Grisetti et al., 2010), have been proposed recently. Some recent 

studies on stereo vision SLAM, such as near real-time learning of 3D point-landmark and 2D 

occupancy-grid maps that use particle filters laser-range data usage for 3D SLAM in outdoor 

environments (Cole & Newman, 2006), detailed 3D mapping based on image edge-point ICP 

and recovery from registration failure (Tomono, 2009), gamma-SLAM that uses stereo vision 

and variance grid maps for SLAM in unstructured environments (Marks et al., 2008), and 

SLAM for autonomous mobile robots that use a binocular stereo vision system (Lu-Fang, Yu-

Xian & Sheng, 2007), have also been reported. The grid-based FastSLAM solves the loop-

closure problem in SLAM. The graph-based SLAM with landmarks increases map accuracy as 

well as solve loop closure. The occupancy grids divide the environment into small cells with a 

predefined size and classify them as occupied or not, and its variants would result in an 

impracticably large-state vector. The importance and effectiveness of these techniques are 

undeniable. 

However, less effort has been dedicated to the area of 3D SLAM on humanoid robots. 

One study used Rao-Blackwellized particle filter (Kwak et al., 2009) on a humanoid robot 

(Kaneko et al., 2004), and another used stereo vision (Tomita et al., 1998). These studies found 

that map and stereo vision are very noisy (Kwak et al., 2009) and need to be improved. One 

cause of noisy vision is shaky video caused by the movement of a humanoid robot, which causes 

difficulties in recognizing and detecting objects. This is one issue that should be addressed 

because the real world is full of moving objects.  

Future work should be devoted to the application of the system to stereo vision SLAM 

for humanoid robots in real 3D environments. The robots have to interact with a 3D 

environment and need metric data to conduct path planning; thus, they require a 3D 

environment map. Among SLAM methods, the grid-based method is suitable for our humanoid 

robot. The feature-based SLAM is efficient for localization but cannot work properly for 

unknown features and path planning (Kwak et al., 2009). For the stereo vision, the first step is 

to set up a stereo camera on a fixed baseline and calibrate it. As the robot moves, the camera 

needs to be stabilized to ensure more accurate vision. Hence, a 3D feature should be included 

to ensure correct recognition and localization of objects. A landmark that will be used for 

SLAM will then be selected based on 3D features. KF will be applied to SLAM by using 

landmark selection, and a 3D environment map can then be created. Research on SLAM can 

greatly benefit the field of robotics and should be given more attention. Future studies can 
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involve stereo video stabilization as well as focus on SLAM with 3D vision for humanoid 

robots. Highly critical places should be a focus of attention; for example, during natural 

disasters, a highly critical place is one where people are located.  
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