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ABSTRACT 

 

Deriving useful and interesting rules from a data mining system is an essential and important task. Problems such 

as the discovery of random and coincidental patterns or patterns with no significant values, and the generation of 

a large volume of rules from a database commonly occur. Works on sustaining the interestingness of rules 

generated by data mining algorithms are actively and constantly being examined and developed. In this paper, a 

systematic way to evaluate the association rules discovered from frequent itemset mining algorithms, combining 

common data mining and statistical interestingness measures, and outline an appropriated sequence of usage is 

presented. The experiments are performed using a number of real-world datasets that represent diverse 

characteristics of data/items, and detailed evaluation of rule sets is provided. Empirical results show that with a 

proper combination of data mining and statistical analysis, the framework is capable of eliminating a large 

number of non-significant, redundant and contradictive rules while preserving relatively valuable high accuracy 

and coverage rules when used in the classification problem. Moreover, the results reveal the important 

characteristics of mining frequent itemsets, and the impact of confidence measure for the classification task 
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INTRODUCTION 

Discovering useful and interesting patterns is one of the main tasks in data mining applications. 

A pattern is considered interesting and useful if it is comprehensible, valid on both test data and 

new unseen data, potentially useful, actionable and novel. However, Han and Kamber (2001) 

claim that, while patterns discovered from the data mining approach are considered strong, but 

not all are interesting. There are two main problems in dealing with pattern selection, namely 

the quantity and the quality of the rules (Lenca, Vaillant and Lallich, 2008). Quantity of the 

rules refers to the problem of generating a large volume of output whilst the quality issues are 

concerned with the rules potentially reflecting real, significant associations in the domain under 

investigation.  

Various objective interestingness criteria have been used to limit the nature of rules 

extracted. However, assessing whether a rule satisfies a particular constraint is accompanied by 

a risk that the rule will satisfy the constraint with respect to the sample data, but not with respect 

to the whole data distribution (Webb, 2007). As such, the rules may not reflect the real 

association between the underlying attributes. Since the nature of data mining techniques is 

data-driven, the generated rules can often be effectively validated by a statistical methodology 

in order for them to be useful in practice (Goodman, Kamath and Kumar, 2008). Interesting 

rules are those rules that have a sound statistical basis and are neither redundant nor 

contradictive. Such an approach requires additional measures based on statistical independence 

and correlation analysis techniques to verify and evaluate the usefulness and quality of the rules 

discovered. This will filter out the redundant, misleading, random and coincidentally occurring 

rules, while at the same time sustaining the accuracy of the rule set and retaining valuable rules.  
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Although many interestingness and constraint-based measures have been successfully 

utilized in previous works, there is still a need to understand the roles these parameters play and 

the way they should be utilized. Thus, in the previous works, the problem addressed by 

Shaharanee, Hadzic and Dillon (2009) and Shaharanee, Hadzic and Dillon (2011) was 

developing systematic ways to verify the usefulness of rules obtained from association rule 

mining. A unified framework, that combines several techniques to assess the quality and 

remove any redundant and unnecessary rules, has been proposed. This framework shows how 

the interestingness and constraint based parameters can be utilized and the sequencing of their 

usage. However, the implication of different confidence values and the time at which the 

constraint is applied was not investigated. In addition, while confidence measures are often used 

to reduce the rule set size to only those reflecting highly confident association, no study has 

been performed on the implication of using different confidence values and the differences of 

applying this constraint at different stages of the rule verification process. This paper extends 

the previously developed framework by Shaharanee, Hadzic and Dillon (2009) and Shaharanee 

Hadzic and Dillon (2011) which seeks to evaluate the impact on classification accuracy, 

generalization power, and rule coverage rate, when rules are generated using frequent itemset 

mining algorithms, as well as when different confidence measures are used and applied at 

different stages of the verification process.  

This paper provides an empirical analysis of the usefulness and implications behind 

using frequent itemset mining for classification tasks, with respect to their classification 

accuracy and coverage rate. Additionally, the role that the confidence measure plays in the 

process is highlighted by studying the implications of using high/or low confidence measures.  

 

PROBLEM DEFINITION 

 

The problem of finding association rules yx   was first introduced in (Agrawal, Imieliński 

and Swami, 1993) as a data mining task for finding frequently co-occurring items in large 

databases. Let  miiiI ,...,, 21  be a set of items. Let D, be a transactions database for which 

each transaction T  is a set of items, such that IT  . An association rule is an implication of 

the form of yx  where Ix   and Iy   and . yx  The support of a rule yx   is the 

number of transactions that contain both x and y. Let the support (or support ratio) of rule 

yx   (denoted as )( yx  ) bes%. This implies that there are s% transactions in D that 

contain items (itemsets) x  and .y  In other words, the probability )( yxP   = s%. Sometimes, 

it is expressed as support count or frequency, that is, it reflects the actual frequency count of 

the number of transactions in D that contain the items that are in the rules. An itemset is frequent 

if it satisfies the user-specified minimum support threshold. The confidence of a rule yx  is 

the number of transactions containing ,x  that also contain .y  The confidence of a rule ,yx   
in other words, is the conditional probability of a transaction containing the consequent )(y  if 

the transaction contains the antecedent ).(x  Hence, the confidence of a rule yx  is calculated 

as )( yx   / ).(x  

Association rule discovery finds all rules that satisfy specific constraints such as the 

minimum support and confidence threshold, as is the case in the Apriori algorithm (Agrawal, 

Imieliński and Swami, 1993). It consists of two main phases: frequent itemsets discovery and 

association rule generation, of which the former task is the pre-requisite and the most complex. 

The Apriori-based algorithm has been favorable for frequent itemsets generation as it performs 

well on sparse data in discovering frequent patterns that are often comprised of rather smaller 

itemsets.  
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Let kF
 
denote the set of frequent k–itemsets and FI  the set of all frequent itemsets. In 

the rest of the paper, the focus is on evaluating the rules discovered using the Apriori approach. 

The datasets with a predefined class label is utilized, where one of the attributes from the dataset 

is considered as a class to be predicted. Thus, only FI  that contain this class attribute is 

considered.  

Let the frequent itemsets FI  that have a class label (value) be denoted as .FIC  The 

problem can be stated as: Given FIC  with accuracy ),(FICac  reduce FIC  into 
~

FIC  such that 

FICFIC 
~

 and ),)(()(
~

 FICacFICac  where   is an arbitrary user defined small value (

  is used to reflect the noise that is often present in real world data).  

 
RELATED WORK 

 

Previous works on discovering and measuring the interestingness of rules from data are 

extensive. Such rules may be extracted using specific data mining methods for characterization, 

classification and prediction, cluster analysis and association rule mining (Han and Kamber, 

2001). The patterns and rules generated from these data mining systems can often be large and 

complex, hindering the analysis process. This motivated another research branch in the data 

mining field, that of finding interesting, useful and significant patterns.  

Many algorithms exist for association rule mining which can be classified as algorithms 

for association rule improvement, mining well defined subsets of the rule (e.g. closed/maximal) 

and mining dense datasets. Such classification of the association rule algorithms mentioned 

earlier refers to a “classic association rule problem” (Hipp, Güntzer and Nakhaeizadeh, 2000). 

Apriori-based association rule mining algorithms have been studied extensively in the classic 

association rule problem for dense datasets. Patterns from the frequent pattern set are often 

redundant and unrelated (Wei, Yi and Wang, 2006). Webb (2007) defines redundant rule 

constraints that are capable of discarding redundant rules. Furthermore, Bayardo, Agrawal and 

Gunopulos (1999) define a more dominant minimum improvement constraint in order to 

discard the redundant rules with the development of the Dense-Miner. Han and Kamber (2001) 

assert that from the rules generated using these data mining systems, often only small subsets 

of the discovered rules are considered interesting and significant. Several rule/pattern 

interestingness measures have been developed in order to tackle these issues. Objective, 

subjective and semantic measures are the three main categories of methods used for discovering 

interestingness of rules (Aydın and Güvenir, 2009; Geng, and Hamilton, 2006; Han and 

Kamber, 2001; McGarry, 2005; Simon, Kumar and Li, 2011). While these criteria offer some 

constraints in discovering strong patterns/rules, many spurious, misleading, uninteresting and 

insignificant rules may still be produced for many domains (Han and Kamber, 2001). This 

problem arises because some association rules are discovered due to pure coincidence resulting 

from certain randomness in the particular dataset being analyzed. Association rule mining 

frameworks may provide either a true discovery or instances of random behaviors (Lallich, 

Teytaud and Prudhomme, 2007). To date several works have addressed this rule interestingness 

issue. The capabilities of statistical analysis in addressing the random effects of patterns from 

data mining systems have been raised by Hamalainen and Nykanen (2008), Kirsch et al. (2012), 

Lallich, Teytaud and Prudhomme (2007), Piatetsky-Shapiro (1991), Webb (2007) and Weiß 

(2008). Statistical independence and correlation analysis are two approaches applied by Han 

and Kamber (2001) in weeding out uninteresting and misleading data mining patterns. Chi 

Squared test (Han and Kamber, 2001), Log Linear analysis (Agresti, 2007) and Regression 

Analysis (Hosmer and Lemeshow, 1989) are several well-known statistical techniques capable 

of capturing statistical dependence among data items.  
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The evaluation of the interestingness of rules is essential in many applications. While a 

substantial number of interestingness and constraint-based measures have been proposed and 

successfully applied, there is still a need to understand the roles that these parameters play and 

the way in which they should be utilized. An understanding of the various implications of 

applying each parameter and providing a systematic, sequential procedure would ensure that 

one will arrive at a more reliable and interesting set of rules.  

 
PROPOSED METHOD 

 

Figure 1 shows the proposed framework. The first partition is used for frequent itemsets 

generation and statistical evaluation, while the second partition acts as sample data drawn from 

the dataset used to verify the accuracy and coverage rate of the discovered rules. The pre-

processing technique is applied to the selected data, to ensure clean and consistent data. The 

relevance of the input attributes in predicting the class attributes is calculated based on the 

Symmetrical Tau technique (Zhou and Dillon, 1991) which removes any irrelevant attributes 

from the initial dataset. The rules are then generated based on frequent itemset mining 

algorithms. The discovered rules are then evaluated using the statistical analysis, and any rules 

determined to be statistically insignificant are discarded. Additionally, constraint measurement 

techniques are employed to discard redundant and contradictive rules. 

 

FIGURE 1. Framework for rule interestingness analysis. 

 

A formal description of the conceptual framework follows. Given a relational database ,D  

 ||21 ,...,, DiiiI   the set of distinct items in ,D   ||21 ,...,, ATatatatAT   the set of input attributes 

in ,D  and  ||21 ,...,, YyyyY   the class attribute with a set of class label in .D  Assume that D  

contains a set of n  records   ,,
1

n

rrr yxD


  where Ixr   is an item or a set of items and Yyr 

is a class label, then |xr| = |AT| and xr = {at1valr, at2valr, …, at|AT|valr} contains the attribute 

names and corresponding values for record r in D for each attribute at in AT. The training 

dataset is denoted as DDtr   
and the test dataset as .DDts   

Pre-processing: The pre-processing is applied to each iat  in ,D  where 

)),...,1((, ATiATati   in order to obtain clean and consistent data.  
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Features Subset 
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Association Rules Mining::

Apriori Algorithm

Generated rules with classes 
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a ) Significance Statistical Results

b ) Redundancy Rules Check

c ) Contradictive Rules

d ) Minimum Confidence Check

A set of significance rules 

mining results

Statistical Analysis

Chi Square Analysis

Logistic Regression 

Rules verification

Dataset

(D)

)(
~

trD

)( tsD

)( trD

PreProcessing 

Missing Value

Discretization
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Features Subset Selection: The relevance of each iat  by determining their importance towards 

predicting the value of the class attribute Y  in ,trD  where )),...,1((, ATiATati   using a 

statistical-heuristic measure, namely the Symmetrical Tau (Zhou, & Dillon 1991). It measures 

the capability of an attribute to predict the class of another attribute. Any irrelevant attributes 

are removed from the dataset, and the filtered database as ,
~

trD  II 
~

 is represented. 

Rules Generation (Apriori(S,C)): For a given ,
~

trD
 
the association rules were generated based 

on Apriori framework using minimum support and confidence thresholds, and the set of 

obtained association rules are denoted as )(AF . 

Rules Generation (Apriori(S)): For a given ,
~

trD
 
the association rules were generated based on 

Apriori framework using only the minimum support threshold, and the set of obtained 

association rules are denoted as )(BF . 

Chi Square Test: For a given ,
~

trD
 
the occurrence of iat  where )),...,1((, ATiATati   is 

independent of the occurrence of Y  if );()()( YPatPYatP ii 
 
otherwise iat  and Y  are 

dependent and correlated (Han, & Kamber 2001). Hence, Chi Square test discards any 

)(AFfAk  and )(BFfBk   
for which iat  contained in x  of ,yx   the 2  value is not 

significant towards Y  (class attribute).  

Logistic Regression Analysis: For a given ,
~

trD  several logistic regression models were 

developed. The model that fits the data well and has the highest predictive capability is selected. 

The co-efficient   of an input attribute iat  where )),,...,1((, ATiATati 
 
is determined 

based on the log likelihood value. Hence, logistic regression 
~

)ln(Y  discards any )(AFfAk 

and )(BFfBk  for which iat contained in x  of ,yx   the ii at  value is not significant 

towards the class attribute .Y  From the initial set of frequent rules, )(AF  and )(BF  the 

resulting sets that have been reduced according to the statistical analysis are denoted as 

 
)(21 ,...,,)(

AFS
fsAfsAfsAAFS 

 
and  

)(21 ,...,,)(
BFS

fsBfsBfsBBFS   respectively.   

Redundant and Contradictive Removal: Productive rules based on minimum improvement 

redundant rule constraint (Bayardo, Agrawal and Gunopulos, 1999), discards any )(AFSfsAk 

and )(BFSfsBk   if confidence (max)(
xz

yx


 confidence )).( yz   

In other words, a rule yx   with confidence value c1 is considered as redundant if there exists 

another rule yz   with confidence value c2, where xz   and c1   c2. 

From the set of statistically reduced frequent rules, )(AFS  and ),(BFS  the resulting sets 

that have been reduced according to the minimum improvement redundant rule constraints are 

denoted as  
)(21 ,...,,)(

AFR
frAfrAfrAAFR   and  

)(21 ,...,,)(
BFR

frBfrBfrBBFR   

respectively.  

Contradictive rule constraint (Zhang & Zhang 2001), discards any two rules 

)(, XFRfrXfrX kj   if yxfrX j   and ,yxfrX k 
 

where   ,,...,1, XFRkj 
 

 BAX ,  and .kj  From the rule sets )(AFR  and ),(BFR  the resulting sets that have been 

reduced according to contradictive rule constraints are denoted as 
~

)(AF  and ),(
~

BF  

respectively. 
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Rules Accuracy and Coverage: Determining the accuracy and coverage rate of rule sets. For 

each of the resulting rule sets,  )(AF  and )(BF ),  )(AFS  and )(BFS ),  )(AFR  and )(BFR ), 

and (
~

)(AF  and 
~

)(BF ), the accuracy rate and the coverage rate in both trD
 
and tsD

 
are 

calculated. The combination of these rule evaluating strategies will facilitate the association 

rule mining framework to determine the right and high quality rules which remain in sets (
~

)(AF  

and )(
~

BF ).  

 

RESULTS 

 

The evaluation of the unification framework is performed using the Wine, Mushroom, Iris and 

Adult datasets, real-world datasets of varying complexity obtained from the UCI Machine 

Learning Repository (Asuncion and Newman, 2007). Since all the datasets used are supervised, 

which reflects a classification problem, the target variables have been chosen to be the right 

hand side/consequence of the association rules discovered during association rule mining 

analysis. An equal depth binning approach is applied to all continuous attributes in the Adult, 

Iris and Wine datasets. This equal depth binning approach will ensure manageable data sizes 

by reducing the number of distinct values per attribute (Han and Kamber, 2001). Other discrete 

attributes in the Adult and Mushroom datasets were preserved in their original state.  

 
TABLE 1.  Dataset Characteristics. 

Dataset #Records #Attributes # Selected Attributes. 

(Sym. Tau) 

# of Rules with Target Variable 

Apriori (S,C) Apriori (S) 

Wine 178 13 12 234 272 

Adult 45222 15 10 1680 2192 

Mushroom 8124 23 11 75237 77815 

Iris 150 4 4 51 58 

 

Table 1 indicates the characteristics of the aforementioned datasets used in our 

evaluation. The Apriori(S,C) in Column 5 will act as the initial benchmark having both the 

minimum support of 10% and the minimum confidence of 60% in generating the rule set. The 

Apriori(S) in Column 6 will discover only the rules based on the minimum support of 10%.  

 
APRIORI(S,C) VS APRIORI(S) 

 

Apriori algorithms have demonstrated a good performance in generating frequent patterns (Han 

and Kamber, 2001). However, the patterns generated need to be evaluated in order to arrive at 

significant and useful patterns. A unification framework for evaluating the interestingness of 

frequent itemsets obtained by the Apriori algorithm was previously developed and reported in 

Shaharanee, Dillon and Hadzic (2009) and Shaharanee, Hadzic and Dillon (2011). It was found 

that the rules generated from the Apriori algorithm were large and contaminated with useless 

patterns. With appropriate statistical analysis, and redundancy and contradictive assessment 

methods, the unification framework managed to discard a large number of rules while still 

preserving high accuracy and coverage rate of the final reduced rule set.  

In this section, the usefulness of the rules generated from both variants is compared. 

Table 2 reveals the progressive difference in the number of rules, the Accuracy Rate (AR) and 

the Coverage Rate (CR) values, as the Symmetrical Tau (ST) feature selection application, 

statistical analysis, redundancy and contradictive assessment methods are utilized. For most of 

the discovered rules in Table 2, the AR in the training set was consistently higher than the 
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testing set. This is due to the fact that the discovered rules were generated from the training set, 

and as a consequence, the rules mostly fit well the characteristics of the data objects that exist 

predominantly in the training set. 
 

TABLE 2. Comparison between Apriori (S,C)and Apriori (S) in Wine Dataset. 

 

 

 

 

 

The initial number of rules from Apriori constrained with min_sup is larger compared 

to the initial number of rules in Apriori constrained with both min_sup and min_conf due to the 

removal of the minimum confidence threshold. As application of the Symmetrical Tau, 

statistical analysis and redundancy assessment were progressively applied to the initial set of 

rules, at least 90% of the rules in the rule set have been discarded. Both AR values for the testing 

dataset in Apriori (S,C) and Apriori (S) increased while the CR of the rules was still preserved at 

100%. As an extension of our previous work in Shaharanee, Dillon and Hadzic (2009), another 

method of analysis to discard contradictive rules (Zhang and Zhang, 2001) was included. 

Contradictive rules exist in Apriori (S) because they are constrained by only a minimum support 

threshold, because at the set confidence threshold of 60% in Apriori (S,C), they do not exist. 

However, this also points to the important difference. The rules with confidence higher than 

60% that are contradictive to other frequent rules in the data, which cannot be present in the 

rule set as they cannot have 60% confidence at the same time, will remain in the rule set, but 

will have a higher misclassification rate. Hence, their contradictive nature would not be 

captured, which essentially would negatively affect the accuracy of the rule set as a whole. An 

example of this scenario is provided later. The contradictive rules detected in Apriori (S) rule set 

are shown in Table 3. 

 
TABLE 3.  List of contradictive rules in Wine dataset for Apriori(S). 

Confidence (%) Support (%) Rules 

64.10 23.36 Flavanoids(2.24 - 3.18) ==> Class(Low) 

35.90 13.08 Flavanoids(2.24 - 3.18) ==> Class(Middle) 

57.50 21.50 ColorIntensity(3.62 - 5.97) ==> Class(Low) 

30.00 11.21 ColorIntensity(3.62 - 5.97) ==> Class(High) 

38.78 17.76 Magnesium(88.4 - 106.8) ==> Class(Low) 

34.69 15.89 Magnesium(88.4 - 106.8) ==> Class(High) 

26.53 12.15 Magnesium(88.4 - 106.8) ==> Class(Middle) 

 

With the removal of the contradictive rules in Apriori (S), both approaches now contain 

the same number of rules (16) with only a modest difference in AR% as shown in Table 2. Even 

though both contain the same number of rules, there are still differences as shown in Figure 2. 

These differences are due to the sequence of the evaluation process in both approaches. Rule 

Type 

of 

analysis 

Data 

Partition 

Apriori (S,C)
 Apriori (S) 

# Of 

Rules 

AR % CR% # Of 

Rules 

AR % CR % 

Initial 

# of Rules 

Training 234 87.58 100.00 272 76.83 100.00 

Testing 79.84 100.00 69.68 100.00 

# of Rules 

after ST 

Training 195 87.53 100.00 217 74.26 100.00 

Testing 79.44 100.00 68.00 100.00 

Statistics 

Analysis 

Training 17 85.07 100.00 24 64.16 100.00 

Testing 81.98 100.00 60.46 100.00 

Redundant 

Removal 

Training 16 85.07 100.00 23 63.52 100.00 

Testing 81.98 100.00 60.05 100.00 

Contradictive 

Removal 

Training 16 85.07 100.00 16 85.63 100.00 

Testing 81.98 100.00 81.94 100.00 

Confidence 

60% 

Training  15 87.84 100.00 

Testing 84.77 100.00 
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(b) does not appear in Apriori (S,C) due to the confidence value being lower than the minimum 

threshold of 60%, while rule (a) does not exist in Apriori (S) because the rule contradicts another 

rule (see Table 3 row 3). 

 

 

 

 

 

 

FIGURE 2. Rule differences between Apriori (S,C) and Apriori (S) after contradictive rule removal. 

 

Finally, the minimum confidence constraint was utilized on the Apriori (S) rule set and 

15 rules were obtained as our final significant rule set (i.e. Rule (b) from Figure 2 was removed). 

As for the final 15 rules, the AR value in Apriori (S) is higher than Apriori (S,C), while the CR 

value remained the same (see Table 2). When the individual accuracy of each rule was checked, 

it was exactly rules (a) and (b) (Figure 2) causing lower AR in the rules from Apriori (S,C) and 

Apriori (S), respectively. Rule (a) was discarded in Apriori (S) because it contradicted another 

rule as shown in Table 3.  

This knowledge of rule (a) being contradictive to another rule (frequent association to 

another class value) was not available in Apriori (S,C) because the minimum confidence 

constraint was applied at the start. This approach missed the fact that association 

“Flavanoids(2.24 - 3.18) ==> Class(Middle)” occurred frequently enough to know that the rule 

“Flavanoids(2.24 - 3.18) ==> Class(Low)” is not reliable enough to be used for prediction. This 

is supported by the fact that the AR of the final 15 rules is higher than the AR of the 16 rules 

from Apriori (S,C) containing the contradictive rule. In Apriori Apriori (S,C), the contradictive rule 

“Flavanoids(2.24 - 3.18) ==> Class(Low)” has misclassified 14 instances from the training set 

and 10 instances from the testing set. By removing this rule, a portion of the misclassified 

instances is captured by other rule(s) that are based on different attribute constraints, and there 

is an increase in accuracy as seen in Table 2.  

These results suggest that it may be advantageous to not apply the confidence constraints 

at the start of the process but rather at the end or after any contradictive frequent rules/patterns 

have been removed. Another option would be to start with a lower confidence threshold to still 

discard those patterns where the confidence is not high enough for them to be considered as a 

significant contradiction to another rule with much higher confidence. One can then increase 

the threshold, and the effects of progressively increasing the confidence threshold are shown in 

Section 5.2. This relationship between contradictive rules and the application of a confidence 

threshold was not discussed in Zhang and Zhang (2001), where the contradictive assessment 

was introduced. 

The comparison of the rules generated from the Apriori (S,C) and Apriori (S) of the Iris, 

Mushroom and Adult datasets is fairly similar to the rules extracted from the Wine dataset. The 

initial rule set from the Apriori (S) algorithm is naturally always larger than the rule set of the 

Apriori (S,C) algorithm as depicted in Tables 4, 5 and 6.  

The Symmetrical Tau (ST) application, statistical analysis, redundancy and 

contradictive assessment methods, and a specific minimum confidence threshold (Apriori (S)) 

are progressively applied to each rule set. As the number of rules for each dataset and each 

 

Apriori (S,C)                               Apriori (S) 

 

                                                                                                     

                                            b 

 

 

 Confidence. (%) Support (%) Rules 

a 64.10 23.36 Flavanoids(2.24 - 3.18) ==> Class(Low) 

b 58.33 13.08 Magnesium(88.4 - 106.8) & ColorIntensity(3.62 - 

5.97) ==> Class(Low) 
 

 a                          

            15 rules                               
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variant was reduced dramatically, the AR for the training and the testing dataset increased 

gradually except for the rule set from Apriori (S,C) for Iris and Mushroom dataset as there are 

slight decreases in their AR. While the CR for each of the Mushroom and Iris datasets was well 

preserved at 100%, the CR in Adult marginally decreased. The Adult dataset is characterized 

by imbalanced target data, as discussed in Liu, Ma and Wong (2000) and Shaharanee, Hadzic 

and Dillon (2011), and many rules were discarded so there were no rules left to cover the rarely 

occurring class value ‘>50K’. 
 

TABLE 4.  Comparison between Apriori (S,C) and Apriori (S) in Iris Dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
TABLE 5.  Comparison between Apriori (S,C)and Apriori (S) in Mushroom Dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The differences between the final number of rules for both Apriori (S,C) and Apriori (S), in 

each of the Iris, Mushroom and Adult datasets are due to the sequence of the evaluation process 

as mentioned earlier. For the final rule sets obtained from the Iris, Mushroom and Adult 

datasets, the Apriori (S) approach achieved higher accuracy, which again confirms our earlier 

suggestion to apply the confidence constraint after the contradictive rules have been removed. 

In all cases, the Apriori (S) approach removed a contradictive rule that remained in Apriori (S,C). 

 

 

 

 
TABLE 6.  Comparison between Apriori (S,C) and Apriori (S) in Adult Dataset. 

Type of 

analysis 

Data 

Partition 

Apriori (S,C) Apriori (S) 

# Of 

Rules 

AR % CR% # Of 

Rules 

AR % CR % 

Initial 

# of Rules 

Training 51 92.86 100.00 58 81.77 100.00 

Testing 90.99 100.00 78.46 100.00 

# of Rules 

after ST 

Training 51 92.86 100.00 58 81.77 100.00 

Testing 90.99 100.00 78.46 100.00 

Statistics 

Analysis 

Training 22 88.15 100.00 29 71.60 100.00 

Testing 85.29 100.00 68.07 100.00 

Redundancy 

Removal 

Training 22 88.15 100.00 29 71.60 100.00 

Testing 85.29 100.00 68.07 100.00 

Contradictive 

Removal 

Training 22 88.15 100.00 21 89.79 100.00 

Testing 85.29 100.00 86.43 100.00 

Confidence 60% Training  21 89.79 100.00 

Testing 86.43 100.00 

Type 

of 

analysis 

Data 

Partition 

Apriori (S,C) Apriori (S) 

# Of 

Rules 

AR % CR% # Of 

Rules 

AR % CR % 

Initial 

# of Rules 

Training 75237 94.27 100.00 77815 

 

91.79 100.00 

Testing 94.34 100.00 83.20 100.00 

# of Rules 

after ST 

Training 653 91.63 100.00 669 89.97 100.00 

Testing 91.75 100.00 90.08 100.00 

Statistics 

Analysis 

Training 44 92.43 100.00 48 81.20 100.00 

Testing 92.51 100.00 81.06 100.00 

Redundancy 

Removal 

Training 21 91.33 100.00 24 76.97 100.00 

Testing 91.28 100.00 76.88 100.00 

Contradictive 

Removal 

Training 21 91.33 100.00 20 94.62 100.00 

Testing 91.28 100.00 94.24 100.00 

Confidence 60% Training  20 94.62 100.00 

Testing 94.24 100.00 
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MINIMUM CONFIDENCE EFFECT 

 

While conducting experiments on the Wine dataset (Refer to Table 2), it has been observed that 

the performance of the AR and CR can vary by altering the value of minimum confidence. By 

increasing the minimum confidence from 60% to 70%, the CR values in the training set 

remained stable at 100%. While there was an increase in the AR values for the test set, the CR 

values decreased. Such a condition occurs because the 13 rules failed to capture all of the 

instances in this dataset. As the confidence thresholds are gradually increased to 70%, 80%, 

90% and 100%, the number of rules in the rule sets became smaller and identical, which lead 

to the increase in AR but at the cost of decreasing the number of instances covered by the rules. 

The changes in confidence values have a direct impact on the size of the rule set, AR, and CR 

values. Progressively increasing the minimum confidence threshold results in an even smaller 

set of rules which are more accurate but then the CR suffers (Table 7). Thus, determining the 

tradeoff between finding a rule set with optimal values of AR and CR is essential (Novak, 

Lavrač and Webb, 2009). This agrees with Wang, Dillon and Chang (2002), who assert the 

need for balancing these conflicting regularization parameters.  

Table 7 show the effect of altering the minimum confidence of rules obtained from all 

datasets. Such results are in agreement with Do, Hui and Fong (2005), who state that a rule with 

a high confidence value implies an accurate prediction. However, as shown in Table 7, even 

though the AR increased simultaneously with the increment of minimum confidence values, 

the CR values decreased as a result. This depicted the trade-off in choosing the suitable 

minimum confidence threshold for each dataset or domain considered. For example, in the 

Mushroom dataset, it appears that for best results, the confidence could have been safely set up 

to 80% without a loss in coverage rate.  

Restricting the rule sets according to the minimum confidence values impacts on the 

trade-off between accuracy and coverage rates. Experiments show that, the AR increase 

simultaneously with the increase of the confidence values. However at some stages, too many 

rules will be discarded which significantly make the coverage rate suffer. It is important in this 

framework to monitor the CR in reducing the number of rules and to identify the break 

point/right time at which to stop reducing the number of rules (increasing the confidence 

values). 

 

TABLE 7.  Minimum Confidence Effect for Wine, Iris, Mushroom and Adult Dataset. 

Type Data Wine Iris Mushroom Adult 

Type 

of 

analysis 

Data 

Partition 

Apriori (S,C) Apriori (S) 

# Of 

Rules 

AR % CR% # Of 

Rules 

AR % CR % 

Initial 

# of Rules 

Training 1680 81.23 100.00 2192 68.98 100.00 

Testing 81.35 100.00 69.05 100.00 

# of Rules 

after ST 

Training 233 80.46 100.00 303 67.46 100.00 

Testing 80.50 100.00 67.45 100.00 

Statistics 

Analysis 

Training 71 81.49 100.00 107 63.83 100.00 

Testing 81.65 100.00 63.87 100.00 

Redundancy 

Removal 

Training 46 85.46 100.00 58 69.65 100.00 

Testing 85.61 100.00 69.72 100.00 

Contradictive 

Removal 

Training 46 85.46 100.00 48 81.79 99.98 

Testing 85.61 100.00 81.91 99.95 

Confidence 60% Training  43 88.31 96.38 

Testing 88.41 96.12 
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of 
analysis 

Partition #Rules AR 
% 

CR % #Rules AR % CR 
% 

#Rules AR 
% 

CR 
% 

#Rules AR % CR 
% 

Conf. Training 15 87.84 100 21 
89.79 100 

20 
94.62 100 

43 88.31 96.38 

60% Testing 84.77 100 
86.43 100 94.24 100 

88.41 96.12 

Conf. Training 13 92.03 100 19 92.91 100 20 
94.62 100 

41 89.63 93.78 

70% Testing 89.6 98.59 93.23 100 
94.24 100 

89.75 93.44 

Conf. Training 11 95.19 99.07 17 94.76 100 19 95.84 100 38 90.61 90.45 

80% Testing 90.14 97.18 95.98 100 95.51 100 90.72 90.05 

Conf. Training 9 98.04 85.98 14 97.25 94.44 15 98.15 99.47 21 96.16 53.5 

90% Testing 91.26 83.10 97.89 88.33 97.67 99.69 96.00 53.9 

Conf. Training 6 100 58.88 9 
100 74.44 

8 
100 85.86 

0 
- - 

100% Testing 92.98 53.52 
100 71.67 100 85.88 - - 

 

 

CONCLUSIONS AND FUTURE WORKS 

 

This paper has presented an empirical analysis of the usefulness and implication behind using 

frequent patterns for classification tasks, with respect to their classification accuracy and 

coverage rate. The quality of the rules discovered are measured based on a statistical, 

redundancy and contradictive assessment methods.  

Initially, two variants of the Apriori algorithm were evaluated. The first variant 

corresponded to the standard Apriori algorithm with both support and confidence threshold, 

while the second variant was constrained using only the minimum support threshold. The result 

demonstrated that the Apriori algorithm with a minimum support variant produced more rules 

in comparison with the first variant, due to no constraint being imposed regarding the 

confidence of the rules. Rules were then verified in order to determine their validity and 

interestingness. The results show that it is more advantageous to remove the rules that failed 

the statistical test, the redundant rules, and the contradictive rules in the initial evaluating 

process and utilize the confidence constraint only at the end of the process. This will result in a 

relatively small number of rules and at the same time any detected contradictive rules will be 

removed. As demonstrated in the experiments, a drawback of applying the minimum confidence 

threshold at the start of the process is the existence of a contradictive rule that has relatively 

low confidence will go unnoticed. This lack of knowledge can cause an unreliable association 

rule to become part of the final rule set which, as demonstrated, reduces the accuracy of the rule 

set in comparison to when the rule was removed. Alternatively, in the second variant (Apriori 

with minimum support) approach, initially the two or more contradictive rules exist so all of 

the contradictive rules will be discarded, as the contradiction implies that they are unreliable 

for prediction purposes. An alternative approach would be to start with a lower confidence 

threshold to still discard those patterns where the confidence is not high enough for them to be 

considered as a significant contradiction to another rule with much higher confidence. One can 

then progressively increase the threshold after the statistical heuristic rule validation techniques 

have been applied. Based on the proper rule evaluating steps in the proposed framework, the 

final rules from the Wine, Iris, Mushroom, and Adult datasets generated using the second 

variant are fewer in number and achieve a better classification and prediction accuracy for both 

the training and the test datasets.  

In the second experiment, the minimum confidence effects on the proposed framework 

are demonstrated. Increasing the confidence threshold will gradually reduce the number of rules 

to those that have high accuracy because of large confidence. However, as the rule sets have 

been reduced, more instances will not be captured by the rule set; hence, typically there is 

deterioration in the CR. Choosing smaller confidence thresholds will result in larger sets of 
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rules that may lack in generalization power, thereby weakening the AR performance but are 

capable of covering more instances. Alternatively, choosing relatively high confidence 

thresholds will result in a smaller set of rules thereby achieving higher AR with the tradeoff of 

capturing fewer instances. Thus, it is important to balance the trade-off between AR and CR in 

order to determine the optimal value for the minimum confidence threshold, which may differ 

depending on the sensitivity of the domain at hand. 

The experimental results have demonstrated that the proposed framework managed to 

reduce a large number of non-significant and redundant rules while simultaneously preserving 

a relatively high level of accuracy. As part of the ongoing works (Shaharanee and Hadzic, 

2013), the proposed framework is intended to be used to evaluate the differences between 

frequent, maximal and close patterns when used for classification tasks, and the effect of the 

confidence threshold.  
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