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ABSTRACT 

Intensity inhomogeneity occurs when pixels in medical images overlap due to anomalies in medical imaging 

devices. These anomalies lead to difficult medical image segmentation. This study proposes a new active 

contour model (ACM) with fractional sinc function to inexpensively segment medical images with intensity 

inhomogeneity. The method integrates a nonlinear fractional sinc function in its curve evolution and edge 

enhancement. The fractional sinc function contributes in giving a rapid contour movement where it improves the 

curve’s bending capability. Furthermore, the fractional sinc function enables the contour evolution to move 

toward the object based on the preserved edges. This study uses the proposed method to segment medical 

images with intensity inhomogeneity using five various image modalities. With improved speed, the proposed 

method more accurately segments medical images compared with other baseline methods. 

 

Keywords: level set method, nonlinear diffusion, active contour model, distance measurement, local or global 

properties 

 

INTRODUCTION 

The level of noise and level of intensity are the two main factors that lower the quality of 

medical images (Li, 2005, 2008; Patil & Deore, 2013; Xu, 2000). A problem called intensity 

inhomogeneity causes a non-uniform distribution of intensity in medical images that leads to 

difficulty in medical image segmentation (Hafiane et al., 2014; He et al., 2010; Kass et al., 

1988). The most common segmentation technique called active contour model (ACM) uses a 

Gaussian filter with linear diffusion method isused to smooth the inhomogeneous image 

texture in medical images (Caselles et al., 1997; Kass et al., 1988; Li et al., 2010). However, 

the linear method also removes important information regarding image details, such as the 

small edges at object boundaries, which may lead to boundary leakages (Hafiane et al., 2014; 

Perona & Malik, 1990; Barenblatt, 2001; Barenblat & Vanquez, 2004). The basic idea of 

ACM is to progressively evolve a contour from its initial location in an image by following 

the trails of computed image pixel intensity or gradient in search of a complete object 

boundary (Kass et al., 1988; Xu et al., 2000; Caselles, 1997). Hence, the ACM fails to 

progress at the missing edge boundary. In contrast, the nonlinear diffusion method steers the 

diffusion at each image point, thereby preserving each edge and maintaining the structure of 

image details (Barenblatt, 2004; Sertan & Aydin, 2015). 

 The literature shows a number of studies that use the nonlinear diffusion function in 

image segmentation (Dan et al., 2012; Mahmoodi, 2003; Li et al., 2010; Wang, 2008) to 

smooth an image texture and maintain its edge structure. Studies in ACM that utilize this 

function started with the proposal of Perona-Malik. The Perona-Malik approach proposes the 

function's application in the anisotropic scale-space (Perona & Malik, 1990). Their work aims 

to reduce image noise without removing the image content (i.e. edges, lines, and other details) 

which is significant for image interpretation. The smoothing process in inhomogeneous 

object is implemented in each iteration but it leads to a slow segmentation speed with high 

computational cost. In contrast, work by (Mahmoodi, 2003) uses the nonlinear diffusion 
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function together with the wavelet thresholding method to reduce image noise. The authors 

propose a weighted diffusivity function that incorporates contextual discontinuities in the 

image. The diffusivity function is then applied on local image features to improve feature 

preservation capability along with noise removal. However, the method concentrates on 

image de-noising without considering object segmentation in the image. Davatzikos, Tao and 

Shen (2003) incorporate the nonlinear function into shape-based segmentation to segment 

different anatomical structures in medical images. They enforce the nonlinear function into 

global and local shape regularization. However, the method segments the exterior part of the 

object without considering the inner structure. It also incorporates the shape-based 

segmentation technique, which requires prior knowledge and an increase in computational 

cost. 

  This paper introduces a new ACM with fractional sinc function to reduce the intensity 

inhomogeneity problem and improve medical image segmentation at a low computational 

cost. The fractional sinc function is the generalization of nonlinear. The sinc method deals 

with problems whose solutions may have singularities or boundary layers. The fractional 

function, on the other hand, models a relationship in which changes in the image texture give 

the same proportional changes in the movement of the contour evolution. In other words, a 

contour evolves despite changes in the image region's intensity. These changes commonly 

occur in images affected by the intensity inhomogeneity problem. The nonlinear applied in 

the proposed method provides the most flexible contour-fitting functionality in the image. 

Besides, the sinc method is responsible for solving problems with weak pixels found in the 

region which lead to missing edges (Sertan & Aydin, 2015). Therefore, the application of the 

fractional sinc function, which is nonlinear, has the capability of providing an improved 

bending effect and rapid contour movement during its evolution, a result that is not obtained 

using normal nonlinear diffusion (Yue et al., 2006). Furthermore, the fractional sinc function 

embedded with the Gaussian filter is also capable of noise reduction, edge enhancement, and 

preservation in the image. In the proposed method, this function is embedded within the 

global and local ACM energies to provide a stable contour evolution and reduce 

computational cost. This purpose is accomplished because the application of the function 

within the global energy ensures flexible contour movement, which enables effective bending 

through an intensity inhomogeneity interface. This leads to reducing the computational cost 

and thus speeding up the segmentation process. As the proposed method works within the 

level set framework, the fractional Euler Lagrance is implemented to minimize the energy 

function. This is to make sure the level set contour/curve stops exactly on the object boundary 

in achieving improved segmentation. The exponential regression of fractional sinc function is 

locally adapted to enable the function to slow down the contour movement when it is near the 

object boundary.  

  The proposed Fractional Sinc method (FSM) has many advantages. First, FSM is 

applied in the contour to achieve rapid movement with better bending effects. These effects 

speed up the segmentation process, thereby reducing the computational cost. Second, the 

proposed function smoothes the image texture while preserving its edges and enhancing 

inhomogeneous object classification in the affected regions. Third, improved segmentation in 

the intensity inhomogeneity interface is accomplished when the fractional sinc function is 

implemented within the global and local ACMs and the energy is minimized based on the 

implementation of fractional Euler Lagrance. 

 

THE PROPOSED METHOD 

 

In the traditional ACM, the Gaussian filter is used to smooth the image texture for image 

segmentation and is normally implemented using the linear function. The filter in the region-
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based contours is responsible for stopping the contour movement at the correct object 

boundary. The Gaussian filter tends to overlook neighboring pixels with less prominent 

gradients because it moves in straight lines. As a result, identification of the object boundary 

is less accurate. This method applies the fractional function using the sinc method, which is 

nonlinear, to produce an efficient interpolation technique. The interpolation technique is a 

method of constructing new data points within known data points. The technique is 

performed with contour or curve fitting to achieve improved segmentation of the object to be 

segmented. Moreover, the collaboration of the interpolation technique of the sinc method 

with the Gaussian process will allow the contour to pass exactly through the given set or 

sampling of pixels in a region and enable non-straight rapid contour movement following the 

image gradient while moving along the identified object boundary. Sinc(t) of order α, (Sincα), 

defined as: 
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where   is the gamma function, t is the variable and   (0,1)   is a parameter.  The sincα 

function, also called the sampling function, is a function that arises regularly in the theory of 

Fourier transforms and signal processing, consequently it has many advantages. It has been 

attached to construct the fractional-delay filters. Fractional-delay filters are types of digital 

filter equipped for bandlimited fulfillment. Bandlimited fulfillment is a technique for 

scheming a signal sample at a qualitative point in time, even if it is established somewhere 

between two sampling points. The extent of the sample ejected is exact because the signal is 

bandlimited to half the sampling rate. This results in the continuous-time signal being exactly 

renovated from the sampled data. Moreover, the limit of the sinc function is the Heaviside 

function as given by: 

                                               
1           t 0

lim  sinc( ) ( )
0 0           t<0  

        t H t
t


 







. 

(12) 

The fractional calculus using the sinc method provides a better bending capability and fits the 

contour movement in the image where the contour movement is more flexible. Bending 

capability enables the contour to effectively and rapidly move toward the object in the image. 



50 
 

The general procedure for nonlinear fractional sinc function is defined by the following 

recursive equation: 

 𝑆𝑛 =  𝛼𝐼𝑛 +  (1 − 𝛼)𝑆𝑛 − 1;              0 ≤  𝛼 ≤ 1 

(13) 

where {𝐼𝑛} is the image to be processed, 𝑆𝑛 is the processed result for the nth step, and 𝛼 is 

the smoothing coefficient. The nonlinear has the capability of protecting and preserving the 

detail in the images and reducing the image noise. When used after several iterations, Eq. 

(13) leads to the following equation: 

𝑆𝑛 =  𝛼 ∑ 𝛽𝑛−𝑖𝐼𝑖 +  𝛽𝑛𝑆0

𝑛

𝑖=1

,                    𝛽 = 1 − 𝛼 

(14) 

where the processing result is a weighted sum of all samples with exponential decreasing 

weights. Eq. (14) has one parameter that meets the algorithm requirements regardless of the 

number of inputs. The current method proposes the implementation of the control parameter 

of 𝛼 with two variables which are embedded in the proposed ACM's global and local energies 

and are responsible for adjusting the contour movement forward and backward depending on 

the medical image’s characteristics. The variables of the control parameters are adjusted in 

both the global and local energies to obtain satisfying results. Let C be a contour in an image 

Ω. The complete energy is defined as follows:  

 

𝐹 (𝐶, 𝑑1, 𝑑2) =  𝜆1 ∫ 𝐺(𝑥)| 𝐼(𝑦) −  𝑑1(𝑥)|𝛼𝑥∗𝑦
𝑑𝑥𝑑𝑦

𝑖𝑛(𝐶)

 

                  +𝜆2 ∫ 𝐺(𝑥)| 𝐼(𝑦) −  𝑑2(𝑥)|𝛼𝑥∗𝑦

𝑜𝑢𝑡(𝐶)
 𝑑𝑥𝑑𝑦 +𝜇. 𝐿𝑒𝑛𝑔𝑡ℎ(𝐶)   

              (15) 

where 𝜆1 and 𝜆2 are two positive parameters, G(x) is the Gaussian filter function in the 

proposed method and d1, d2 are defined by:  
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(16) 

Accordingly, 𝑑 in Eq.(16) is not a constant value because it leads to linearity in a 

homogeneous environment. All locations in the image, including the edges, are equally 

smoothed (Zhang et al., 2009; 2010; 2013) when linearity occurs. This phenomenon cannot 

happen in medical images because every tiny image detail contains useful information. The 

level set method is implemented to solve the problem of topological changes in the ACM. 

Therefore, with the level set method, the new equation is given as follows: 
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𝐹 (𝜙, 𝑑1, 𝑑2) =  𝜆1 ∫ 𝐺(𝑥)| 𝐼(𝑦) −  𝑑1(𝑥)|𝛼𝑥∗𝑦
𝑠𝑖𝑛𝑐𝛼(𝜙)𝑑𝑥𝑑𝑦

𝑖𝑛(𝜙)

 

+ 𝜆2 ∫ 𝐺(𝑥)| 𝐼(𝑦) − 𝑑2(𝑥)|𝛼𝑥∗𝑦

𝑜𝑢𝑡(𝜙)
 (1 − 𝑠𝑖𝑛𝑐𝛼(𝜙))𝑑𝑥𝑑𝑦 

+ 𝜇. 𝐿𝑒𝑛𝑔𝑡ℎ(𝜙) 

(17) 

where sincα(ϕ) is based on Heaviside function. As the proposed method works within the 

level set method (LSM) framework, the level set function (LSF) of LSM normally requires 

the contour placement to be frequently re-initialized to maintain contour evolution stability. 

However, this technique requires complex computations to ensure that the evolving LSF is 

close to the signed distance function cost (Li et. al, 2005; 2010). Hence, the methods 

currently applying the re-initialization technique are faced with heavy computations. This 

study proposes an alternative technique by applying the Gaussian filter with fractional sinc 

function in each contour movement. This technique provides rapid and dynamic movement, 

which speeds up the segmentation process. Moreover, Gaussian filtering is used to enhance 

and preserve the edge, thereby maintaining the image structure. The edge is preserved toward 

the direction of the object boundary. The computational requirement for separating 

inhomogeneous objects within regions is simplified by applying the fractional sinc function 

in the Gaussian filter modification. This is given by:  

 

                                              𝐼(𝑥) − (𝑑1 + 𝑑2)𝛼𝑥∗𝑦
 

(18) 

where 𝑑1 and 𝑑2 are the two regions, and 𝐼(𝑥) is the original image. For a better 

segmentation process, the overall equation is applied to the image to improve the image 

intensity separation in each region. The power of α is the control parameter of the sinc 

function with two variable numbers which is based on exponential regression. If a large 

number is given to the α, the contour will move further toward the segmented object 

boundary. If a small number is used, the contour will move nearer the segmented object. The 

choice of input for α depends on the distribution severity of the image intensity. This input 

needs to be properly tuned. The contour does not stop at the exact object boundaries when 

only global energy is utilized. To solve this problem, the energy function needs to be 

minimized where the level set contour must be on the object boundary. To realize this, we 

implement the distance measure based on the Euler Lagrange technique. As the proposed 

method is based on the fractional sinc method, the equation for distance measure as stated in 

the third line of Eq. (17) is given by: 

 

     𝐿𝑒𝑛𝑔𝑡ℎ(𝜙) = 𝜇𝐿𝑓𝛼(𝜙)  

(19) 

where 𝐿𝑓𝛼(𝜙) is the distance measure based on fractional sinc function and is given by; 
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𝐹𝛼(𝜙) =  ∫ |∇𝛼𝜙(𝑥, 𝑦)
Ω

|𝛼𝑠𝑖𝑛𝑐𝛼𝑑𝑥𝑑𝑦 

(20) 

To minimize the energy function, 𝐹𝛼(𝜙) = 0 to make sure the contour is placed exactly on 

the object boundary. 

The algorithm for our proposed method can be summarized in the following steps: 

1. The contour is initialized based on the curve evolution 

𝜇 =  {
𝑑1    𝑥 ∈  Ω𝑖𝑛

   𝑑2     𝑥 ∈  Ω𝑜𝑢𝑡
 

where d is not the constant used to implement the nonlinear diffusion concept. 

2. 𝑑1 and 𝑑2 are computed based on Eq. (16). 

3. The contour evolves based on the fractional sync function  represented by sincα , α>0. 

4. The LSF is regularized based on the local properties. 

5. The evolution of the LSF is checked for convergence. If the evolution does not 

converge, step number 2 is repeated. 

 

       In step 3, x and y are the control parameters of α which are adjusted to obtain better 

contour bending effects and rapid movement toward the boundary of the object. Giving a 

larger number of x and y parameters (i.e., more than 5) moves the contour far from the 

boundary. A too small input number (i.e., less than 1) draws the contour near or flat at the 

boundary of the object of interest. The nonlinear applied on the contour with the fractional 

sinc function moves it forward and backward until the level set property is equal to |∇𝜙| =
 1. The fractional sinc function parameter works well when the local energy is efficiently 

adapted at the area with a high gradient level. 

              

EXPERIMENTS & RESULTS 

The experiment was designed using MATLAB R (2008b) on 2.5 GHz with Intel Processor i5 

according to the implementation framework. Regardless of the image modalities, these 

experiments aimed to evaluate the proposed method's accuracy in segmenting objects in 

medical images affected by the intensity inhomogeneity problem. The current experiment 

used medical images as the datasets and they are magnetic resonance imaging (MRI), 

computerized tomography (CT) scan, microscopic imaging, ultrasound imaging, and x-ray 

imaging. The CT scan image contained the least noise among these medical images. The 

object boundary was clearly seen in this image. Therefore, boundary leakage was not a 

problem. However, the interior parts of the object in the CT scan image often contained more 

noise and suffered from the intensity inhomogeneity problem. Both the interior and exterior 

parts of the objects in the other image types suffered from boundary leakages and intensity 

inhomogeneities. The medical images used in this study are taken from the database of image 

clef from the year 2010 to year 2012.  

 Two ACM methods were used to assess the proposed algorithm performance: Chan -

Vese (Chan & Vese, 2001) and Selective Global Local Active Contour Model (SGLACM) 

(Zhang et al., 2010) methods. The C–V method is a region-based ACM that incurs high 

computational cost and produces over segmentation in dealing with intensity inhomogeneity. 

The SGLACM method manages to address the C–V method's deficiencies but does not 
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provide contour stability during its evolution. To address the stability issue, the DRLSE 

method introduces the distance measurement term based on local energy. However, the 

DRLSE method does not segment medical images with a severe intensity inhomogeneity 

problem. The DRLSE code used in this paper is taken from Chumning Li’s homepage, the C-

V code is taken from the Mathworks website and the SGLACM code is taken from the Zhang 

Kaihua homepage. 

       The experimental conducted in the next section investigated the proposed method's 

effectiveness in segmenting four medical images that suffer from the inhomogeneity problem. 

These images were produced from MRI, CT scan, ultrasound, and x-ray. The performance of 

the proposed method in terms of segmentation accuracy and processing speed was then 

compared with that of related baseline methods (i.e., SGLACM and C–V). 
 

BENCHMARKS WITH OTHER METHODS 

 

      This section further demonstrated the proposed method's capability to segment a variety 

of medical images from different modalities with the aim to achieve improved segmentation 

within intensity inhomogeneity interface. We expect the outcome as a clean image with the 

initial contour wrap around the object of interest. A clean outcome of segmentation in this 

study is where only the object in the image is segmented without segmenting other unwanted 

regions regardless the intensity inhomogeneity problems. The images used in the experiments 

were MRI images of a brain and a heart, a CT scan image of a brain, ultrasound images of a 

heart, appendix and breast cyst and x-ray images of blood vessels. The C–V method is among 

the popular methods currently used in medical image segmentation. The SGLACM method, 

meanwhile, combines both edge-based and region-based ACMs by using a hybrid concept 

similar to the proposed method. Hence, the C–V and SGLACM methods were used as the 

baseline methods in this study. Fig.1 below at the first row illustrated the initial contour for 

the three methods involved in the experiment. For every experiments executed in this section 

will be using the same placement of initial contour. The initial contour is produced differently 

among methods of ACM depending on its nature of implementation. At the first row of Fig.1 

illustrated the initial contour placement for C-V, SGLACM and our method respectively. 

Initial contour placement of our method is similar to initial contour of SGLACM. However, 

the result obtained from our method is different from SGLACM due to the rapid movement 

and bending capability provided by the proposed method. The initial contour used throughout 

the experiment in this study is maintained as shown in Fig. 2, Fig.3 and others.  

      The first experiment began with the segmentation of an MRI image of a brain which later 

supported by two CT scan images of brain. Both MRI and CT scan images had less noise 

compared to the microscopic image of the two cells. However, images present were darker 

and had many sub-regions except for the second image of CT scan that focusing on the 

internal part of the white flare which result in a brighter environment. The internal region of 

brain images are suffered from the intensity inhomogeneity problem that create a challenging 

situation in segmenting the white flare. The segmentation results are shown in Fig. 1, Fiq.2 

and Fig. 3 respectively. In experiments conducted in Fig.1 to Fig.3, the parameter of 𝛼 that 

represent the sincα function (Eq.17) is adjusted to 0.077 and the parameter of sigma 𝜎 is 

adjusted to 1. If the sigma is chosen as a big number the initial contour may move 

dynamically and may disappeared without segmenting the object of interest. This is due to 

the smooth effect on the image texture which is high that may push the contour to move 

rapidly thus disappear from the image. On the other hand, the parameter 𝛼 of sincα function 

is given as 0.077 due to the level of noise which is less when compared to the microscopic 

image of cell. The first column in Fig.1 shows that the C–V method successfully segmented 

the image. The method highly utilized the global energy. Hence, in internal sub-regions with 

intensity inhomogeneity, the method tended to also segment unwanted regions and produced 
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over-segmentation. The SGLACM method only segmented the external part of the brain 

image. The segmentation result of the proposed approach in the third column of Fig. 1 

illustrates a smooth segmentation outcome. Both the exterior and interior parts of the brain 

were successfully segmented. Application of the fractional sinc function in the Gaussian filter 

also improved the image's appearance. The region was smoother, the edges were clearer, and 

the image structure was preserved. As a result, the proposed method successfully addressed 

the intensity inhomogeneity problem in the internal part of the image and alleviated the 

oversegmentation problem. Accordingly, the MRI brain was segmented in 50 iterations 

within 0.66 s. The proposed method segmented the image with a lower computational cost 

compared to the baseline methods. The C–V method made 300 iterations within 7.28 s. The 

SGLACM method completed the segmentation in 120 iterations within 1.03 s. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

FIGURE 1. Brain MRI image segmentation. The final results using the C–V, SGLACM, and proposed methods are shown in 

the first, second, and third columns when α=0.077 and σ = 1.0, respectively. The first row shows the initial contour and will 

be applied throughout the experiments. 

 

Fig.2 illustrates the segmentation outcome for a CT scan image of a brain. The image is 

used to support the first experiment with the MRI image of a brain, where the image also 

contained numerous sub-regions which led to over sampling of the initial contour, possibly 

segmenting the unwanted regions as well. However, unlike the MRI image of the brain, the 

interior parts of the sub-regions were surrounded with a bright intensity (Fig.2). The C–V 

method produced the segmentation of unwanted regions and completed the segmentation in 

50 iterations within 2.77 s, and this is shown in the first column of Fig.2. The SGLACM 

method produced a similar outcome, where only the exterior part of the brain was segmented 

in the MRI image. The method completed the segmentation in 120 iterations within 1.6 s. The 

proposed method produced a cleaner outcome with segmentation of both the exterior and 

interior parts in 40 iterations within 1.01 s. 
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FIGURE 2. CT scan image of brain segmentation. The final results using the C–V, SGLACM, and proposed methods are 

shown in the first, second, and third columns when  α=0.077 σ = 1.0, respectively. 
 

 

(a) 

 

(b) 

 

(c) 

FIGURE 3. Segmentation of a second CT scan image of a brain that focus on the white flare. The final results using the C–V, 

SGLACM, and proposed methods are shown in the first, second, and third columns when α=0.077 and σ = 1.0, respectively. 

 

        The experiment was continued with another CT scan image of a brain, but this time the 

image focused on the white flare in the brain. The aim was to show the accuracy of 

segmentation provided by the proposed method in segmenting each of the white flares 

existing in the brain image. The texture of the image was smooth but, the classification of the 

intensity levels occurring in the image was challenging, where the initial contour may not 

have correctly moved toward the white flare and segmented each of the white flares in the 

image. The parameter of sincα function and the parameter of sigma used here was the same 

as used in Fig.2 and Fig.3 as the nature of the image was the same. Among the results 

obtained, our method presented an outcome which, situated at the last column in Fig.3, 

showed better accuracy when compared to the outcome using the C-V method in the first 

column and the SGLACM method in the second column. Our method did not produce any 

unwanted segmented regions and the thin long white flare labelled ”x” in Fig.5 (last column) 

was excellently segmented compared to other methods where the white flare was not 

successfully segmented. The C-V method, due its intensity inhomogeneity problem, did not 

segment the white flare in the image successfully. On the other hand, the SGLACM method 

produced segmentation which was less accurate with some of the white flare, as shown by the 

arrow, not being successfully segmented. In terms of speed, our method managed to complete 

the segmentation process within 40 iterations in 0.8 s whereas the C-V method took 300 

iterations in 6.2 s and the SGLACM method took 60 iterations in 0.9 s. 

  The experiment using the MRI image of a heart was then conducted. We produced 

two MRI images of the heart with different texture and from a different angle. Both images 

revealed a slightly different texture than the earlier images. They also suffered from a high 

noise level with severe intensity inhomogeneity leading to weak edges. The hole in the center 

revealed a similar gradient level to the background with dark intensity, which made the 

segmentation process more challenging. Due to the texture of both images being unclear and 

 
(a) 

 
(b) 

 
(c) 
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having more intensity levels which were not homogeneous, we adjusted the sincα parameter 

to be bigger, at 0.084, while the sigma 𝜎 was maintained at 1. In this situation the 

interpolation process of fractional sinc function would better classify the inhomogenous 

objects in a region. The experimental results for the MRI image of a heart are shown in Fig.4 

and Fig.5. The segmentation results using the C–V, SGLACM, and proposed methods are 

shown in the first, second, and third columns, respectively, in both Fig.4 and Fig.5. The 

segmentation outcomes were similar in the C–V and the proposed methods for both images in 

Fig.4 and Fig.5. The proposed method demonstrated a cleaner and more defined 

segmentation outcome without any oversampling. This result indicated a significant reduction 

in intensity inhomogeneity in the image. For the image in Fig.4, the C–V method made 100 

iterations within 3.68 s to complete the segmentation, whereas the proposed method 

segmented the heart object in the MRI image with only 40 iterations in 1.7 s. On the other 

hand the C-V method completed the segmentation of the image in Fig.5 within 70  iterations 

in 2.11 s, while our proposed method completed the segmentation within 60 iterations in 1.2 

s. The SGLACM method, which made 120 iterations in 0.95 s for the image in Fig.4 and 60 

iterations in 1.1 s for the image in Fig.5, only segmented the outer part of the heart object and 

did not segment the hole in the image’s center. 

 

 
(a) 

 
(b) 

 
(c) 

FIGURE 4. Experiment on the MRI image of a heart. The final results using the C–V, SGLACM, and proposed methods are 

shown in the first, second, and third columns for α=0.084 and σ = 1.0, respectively. 

 
 

 

(a) 

 

(b) 

 

(c) 

FIGURE 5. Experiment on another MRI image of a heart in different angle. The final results using the C–V, SGLACM, and 

proposed methods are shown in the first, second, and third columns for α=0.084 and σ = 1.0, respectively. 

    

          The experiment continued with three ultrasound images that represented an image of a 

liver in Fig.6, image of an appendix in Fig.7 and image of a breast cyst in Fig.8. Ultrasound 

images are known to be the noisiest among the medical images. To conduct the experiments 

on these ultrasound images, we adjusted the sincαto 0.1, which is much larger, and sigma 𝜎 

to 5. This was due to the nature of the image, which was rough and had severe intensity 

inhomogeneity. Moreover, its intensity distribution was not homogeneous, its object 
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boundary was very weak, and it had many missing edges. Besides, the liver image was 

particularly dark with a complex and rough texture, which posed a challenging situation for 

any segmentation process. The segmentation outcomes obtained from this experiment are 

depicted in Fig. 8. As expected, the C-V method displayed many overlapping pixels in the 

image's regions with 250 iterations in 7.28 s. The SGLACM method only segmented the 

image exterior with 120 iterations in 0.82 s. Although selective global and local ACM was 

applied, the contour did not segment the liver object because of the complex image texture. 

The proposed method demonstrated an impressive outcome in the third column of Fig.6. 

Without any over sampling, the method accurately segmented the ultrasound image of a liver 

with 50 iterations in 0.78 s. 

 
(a) 

 
(b) 

 
(c) 

 

FIGURE 6. Experiment of an ultrasound image of a liver. The final results using the C–V, SGLACM, and proposed methods 

are shown in the first, second, and third columns, respectively. The parameter of  α=0.1 and σ is 5. 

 

The experiment was repeated on an ultrasound image of an appendix to further support 

the consistency of the experimental findings on ultrasound images. This image of an 

appendix was more challenging to segment because its texture was more complex and darker 

than the previous images. The appendix object was labeled “A”. Much noise and overlapping 

pixels surrounded the object, and the quality of this ultrasound image was very low. Hence, 

the   values of the proposed method were set larger than usual with   = 5 as mentioned 

earlier. The segmentation results of the appendix object are shown in Fig.7. The C–V method 

produced a severe over segmentation effect, which made its segmentation result less 

successful. The SGLACM method only segmented the exterior image border, ignoring the 

segmentation of the appendix object. A successful appendix object segmentation was 

demonstrated by the proposed method (third column, Fig.7) with a significantly less over 

sampling effect than with the C–V method. In terms of the time taken to complete the 

segmentation, the proposed method took the least time among all the methods. The proposed 

method took only 40 iterations within 1.21 s, whereas the C–V method completed the 

segmentation in 140 iterations within 3.23 s. The SGLACM method took about 120 iterations 

within 1.68 s. 

 
(a) 

 
(b) 

 
(c) 

FIGURE 7. Experiments on ultrasound image of appendix. The final results using the C–V, SGLACM, and proposed methods 

are shown in the first, second, and third columns, respectively. The parameter of α=0.1 and  σ = 5. 
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          Another ultrasound image is shown which represents the image of breast cyst in Fig.10. 

The reason is to support the experiments conducted earlier and to observe the efficiency of 

the proposed method. As the nature of the ultrasound image is the same as previous 

ultrasound images, the parameters used for 𝛼 and 𝜎 are the same as those used in Fig.6 and 

Fig.7. Based on the outcome obtained, as shown in Fig.8, our method produced a cleaner 

outcome with reduced intensity inhomogeneity and managed to successfully segment the cyst 

within 40 iterations in 1.2 s. On the other hand, the C-V method segmented the cyst object 

within 250 iterations in 8 s but produced segmentation of unwanted regions. SGLACM only 

segmented the outer part but did not manage to segment the cyst object, and this was done 

within 50 iterations in 1.31 s. 

 

 

(a) 

 

(b) 

 

(c) 

FIGURE 8. Experiments on ultrasound image of breast cysts. The final results using the C–V, SGLACM, and proposed 

methods are shown in the first, second, and third columns, respectively. The parameter of  α=0.1 and  σ = 5. 

 

The final experiment was conducted on x-ray images of blood vessels. Unlike the other 

images, these images were distinctive with a long and winding structure. The background of 

both images had a slightly brighter intensity than the interior region of the vessels. The 

texture of the image was smooth and the intensity level that represented the background of 

the vessel object was slightly similar where the intensity level was difficult to recognize. 

Thus, we adjusted the α to 0.06 and the σ was adjusted to 3.  

 

 
(a) 

 
(b) 

 
(c) 

FIGURE 9. Experiments on X-ray images of thin and winding blood vessels. The final results using the C-V, SGLACM, and 

proposed methods are shown in the first, second, and third columns, respectively. The parameter of  α=0.06 and σ = 3. 

 

The segmentation results for these images are shown in Figs.9 and 10. The boundary of the 

long and thin vessels suffered from the intensity inhomogeneity problem, which made the 

segmentation arduous. The SGLACM method (second column, Fig.9) did not accurately 



59 
 

segment the blood vessel. In this case, the contour did not stop on the exact blood vessel 

boundary. To complete the segmentation process, the method made 120 iterations within 

2.02 s. The C-V method did not successfully segment the vessel and failed to identify the area 

badly affected by the intensity inhomogeneity problem. This area is indicated by an arrow in 

the first column. To complete the segmentation, the C-V method made 300 iterations within 

2.68 s. Using the proposed method, an accurate segmentation outcome for the blood vessel 

was achieved with a lower computational cost. The method made only 40 iterations within 

1.1 s. A similar experiment was repeated on another blood vessel for consistency purposes 

(Fig.10). 

  The image in Fig.10 illustrates an intensity inhomogeneity problem together with 

some subsequent pixels weak in intensity in the vessel. All the methods successfully 

segmented the blood vessel, albeit with different computational times. The C-V method 

completed the segmentation process in 50 iterations within 8.4 s. It also encountered some 

segmentation difficulties along the vessel boundary because of the intensity inhomogeneity 

effect. In contrast, the SGLACM method made about 40 iterations in 6.8 s to complete the 

vessel segmentation. The proposed method completed a successful blood vessel segmentation 

in just 30 iterations within 5.4 s. This computational time was the shortest completion time 

achieved among the methods. 

 

 
(a) 

 
(b) 

 
(c) 

FIGURE 10. Experiments on the second type of blood vessel X-ray images. The final results using the C–V, SGLACM, and 

proposed methods are shown in the first, second, and third columns, respectively. The parameter of α=0.06 and σ = 3. 

        

Speed, aside from improving the segmentation, was also important in completing the 

segmentation process. The proposed method produced a satisfactory segmentation outcome 

in reducing the processing time required to complete successful segmentation. 

 

DISCUSSION 

 

This section discusses the analysis of the results obtained from the experiments on five 

medical image modalities. Most of the images used in the experiments suffered from intensity 

inhomogeneity problems. Hence, some critical edges along the object boundary became weak 

or missing and led to gaps at the boundary. Among the medical images used in this paper, the 

CT scan image has the least noise, especially at the exterior part of the object. Other images, 

such as those from MRI, microscopic imaging, ultrasound imaging, and x-ray imaging have 

much noise, which leads to the intensity inhomogeneity problem. The proposed method aims 

to reduce the intensity inhomogeneity problem, thereby improving the segmentation of 

objects of interest in medical images using a shorter processing time. 

  This study introduces the use of the fractional sinc function of order α with ACM 

because it removes noise in an image while maintaining the edges of its structure. The use of 

the sinc method together with the fractional function is further introduced for flexible contour 
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movement with an improved bending effect during its evolution. This bending flexibility 

enables the contours to easily move forward and backward toward the object of interest and 

to quickly segment the object. Moreover, the sinc method with fractional function has the 

strength to rapidly move the contour within the intensity inhomogeneity interface toward the 

object. It further moves the contour more slowly when it is near the object boundary. 

Consequently, the contour locally adapts at the boundary interface for improved segmentation 

results. 

  The first experiment was conducted on four different modalities which involves 

various human organ images (i.e., MRI, CT scan, ultrasound, and x-ray). The experiments 

were conducted to support the use of the nonlinear function in the proposed method. Each 

image had different characteristics (i.e., dark, blurry, long, thin, and winding). All of the 

images were affected by noise and the intensity inhomogeneity problem. Some images (i.e. 

ultrasound image) had complex and rough textures. The proposed method, which uses the 

linear with the Gaussian filter, was compared with the C–V and SGLACM methods. The 

fractional sinc function applied with the proposed method showed an improved segmentation 

of medical images with an intensity inhomogeneity interface. The proposed method speeds 

up the segmentation process. The sinc method applied with the fractional function proves that 

the rapid movement and bending capability of the contour toward the object boundary 

improves segmentation accuracy with a lower computational cost. Moreover, the fractional 

sinc function used to modify the Gaussian filter produces enhanced image details, including 

the edges. This finding is clearly demonstrated in the experiments, where the medical images 

segmented with the proposed method had less over sampling and improved boundary 

segmentation accuracy compared with the other approaches. Therefore, the proposed method 

improves medical image segmentation for various modalities in the intensity inhomogeneity 

interface with a lower computational cost. 

 

CONCLUSION 

A combination of global and local ACMs which uses the fractional sinc function of order α, 

with exponential regression to speed up contour evolution is presented. This method provides 

improved bending effects for contour movement during its evolution and enhances an 

object’s boundary edges. This paper proposes the application of the fractional sinc function 

on the contour during its evolution using both global and local energies. The Gaussian filter is 

modified with the fractional sinc function to smooth the image and enhance its edges, thereby 

preserving the image structure. The filter is also used to reduce the oversampling issue 

produced by region-based ACM on images with intensity inhomogeneity. The contours 

embedded with the fractional sinc function actively move forward and backward toward the 

desired object to be closer to the object boundary. A distance measurement based on 

fractional Euler Lagrance with local energy is implemented to accurately segment the object 

at its correct boundary within the level set framework. The energy function is minimized as 

the level set curve meets exactly on the object boundary. Regardless of image modality, the 

proposed method provides improved segmentation of the object of interest at a lower 

computational cost than the other common ACM methods. 
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